Behavior Genetics

, Volume 18, Issue 4, pp 537–547 | Cite as

Preweaning experience in the control of mating preferences by genes in the major histocompatibility complex of the mouse

  • Gary K. Beauchamp
  • Kunio Yamazaki
  • Judith Bard
  • Edward A. Boyse


The major histocompatibility complex (MHC) of genes of the mouse influences mate choice. Typically, inbred males prefer to mate with females that differ from themselves at this gene complex. Previous studies documenting differences between mating preferences of inbred and F2-generation males, as well as a possible effect of ambient mouse odors on preference, indirectly implicate rearing history as an influence in the determination of mating preference according to MHC types. To test directly the role of rearing history, entire litters were fostered onto parents of the same or different MHC types. Fostering of males onto parents of different MHC types reversed the natural preference; under these conditions, matings with females of the same MHC type as the fostered male were more frequent. Thus, male mating bias appears to be acquired during early development through exposure to parental MHC-controlled signals. Preliminary studies of mating biases in fostered females demonstrated a mating bias that was unaffected by fostering experiences. These studies indicate that the same set of genes involved in regulation of immune function also determines, in part, mate choice. A male bias in favor of females whose MHC types differ from the male's parental MHC types could serve to promote heterozygosity at the MHC.

Key Words

olfaction major histocompatibility complex (MHC) mating preference sexual behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albonetti, M. E., and D'Udine, B. (1986). Social experience occurring during adult life: Its effects on socio-sexual olfactory preferences in inbred mice.Mus. musculus. Anim. Behav. 34:1844–1847.Google Scholar
  2. Alleva, E., D'Udine, B., and Oliverio, A. (1981). Effect d'une experience olfactive precoce sur les preferences sexuelles de deux souches de souris consanguines.Biol. Behav. 6:73–78.Google Scholar
  3. Bateson, P. (1978). Sexual imprinting and optimal outbreeding.Nature 273:659–660.PubMedGoogle Scholar
  4. Bateson, P. (1983). Optimal outbreeding. In Bateson, P. (ed.),Mate Choice, Cambridge University Press, Cambridge, pp. 257–277.Google Scholar
  5. Beauchamp, G. K., Yamazaki, K., and Boyse, E. A. (1985). The chemosensory recognition of genetic individuality.Sci. Am. 253:86–92.PubMedGoogle Scholar
  6. Beauchamp, G. K., Gilbert, A. N., Yamazaki, K., and Boyse, E. A. (1986). Genetic basis for individual discriminations: The major histocompatibility complex of the mouse. In Duvall, D., Muller-Schwarze, D., and Silverstein, R. M. (eds.),Chemical Signals in Vertebrates, 4, Plenum Press, New York, pp. 413–422.Google Scholar
  7. Blaustein, A. R. (1983). Kin recognition mechanisms: Phenotypic matching or recognition alleles.Am. Nat. 121:749–754.Google Scholar
  8. Boyse, E. A., Beauchamp, G. K., and Yamazaki, K. (1983). The sensory perception of genotypic polymorphism of the major histocompatibility complex and other genes. Some physiological and phylogenetic implications.Hum. Immunol. 6:177–183.PubMedGoogle Scholar
  9. Boyse, E. A., Beauchamp, G. K., and Yamazaki, K. (1987). The genetics of body scent.Trends Genet. 3:97–102.Google Scholar
  10. Brown, R. E., Singh, P. B., and Rosen, B. (1987). The major histocompatibility complex and the chemosensory recognition of individuality in rats.Physiol. Behav. 40:65–73.Google Scholar
  11. Dewsbury, D. A. (1982). Ejaculate cost and male choice.Am. Nat. 119:601–610.Google Scholar
  12. Gilder, P. M., and Slater, P. J. B. (1978). Interest of mice in conspecific male odours is influenced by degree of kinship.Nature 274:364–365.PubMedGoogle Scholar
  13. Grosberg, R. K., and Quinn, J. F. (1986). The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate.Nature 322:456–459.Google Scholar
  14. Hayashi, S., and Kimura, T. (1978). Effects of exposure to males on sexual preference in female mice.Anim. Behav. 26:290–295.Google Scholar
  15. Klein, J. (1986).Natural History of the Major Histocompatibility Complex, John Wiley and Sons, New York.Google Scholar
  16. Mainardi, D. (1964). Relations between early experience and sexual preferences in female mice.Atti. Assoc. Genet. Ital. 9:141–145.Google Scholar
  17. Mainardi, D., Marsan, M., and Pasquali, A. (1965). Causation of sexual preference of the house mouse. The behavior of mice reared by parents whose odor was artifically altered.Atti. Soc. Ital. Sci. Nat. Milano 104:325–338.Google Scholar
  18. O'Brien, S. J., Roelke, M. E., Marker, L., Newman, A., Winkler, C. A., Meltzer, D., Colly, L., Evermann, J. F., Bush, M., and Wildt, D. E. (1985). Genetic basis for species vulnerability in the cheetah.Science 227:1428–1434.PubMedGoogle Scholar
  19. Pease, R., Schulze, D. H., Pfaffenbach, G. M., and Nathenson, S. G. (1983). Spontaneous H-2 mutants provide evidence that a copy mechanism analogous to gene conversion generates polymorphism in the major histocompatibility complex.Proc. Natl. Acad. Sci. USA 80:242–246.PubMedGoogle Scholar
  20. Singh, P. B., Brown, R. E., and Roser, B. (1987). MHC antigens in urine as olfactory recognition cues.Nature 327:161–164.PubMedGoogle Scholar
  21. Trivers, R. L. (1972): Paretal investment and sexual selection. In Campbell, B. (ed.),Sexual Selection and the Descent of Man, Chicago University Press, Chicago, pp. 136–179.Google Scholar
  22. Waldman, B. (1987). Mechanism of kin recognition.J. Theor. Biol. 128:159–185.Google Scholar
  23. Weiss, E. H., Mellor, A., Golden, L., Fahrner, K., Simpson, E., Hurst, J., and Flavell, R. A. (1983). The structure of a mutant H-2 gene suggests conversion-like events.Nature 301:671–674.PubMedGoogle Scholar
  24. Yamaguchi, M., Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L., and Boyse, E. A. (1981). Distinctive urinary odors governed by major histocompatibility locus of the mouse.Proc. Natl. Acad. Sci. USA 78:5817–5820.PubMedGoogle Scholar
  25. Yamazaki, K., Boyse, E. A., Mike, V., Thaler, H. T., Mathieson, B. J., Abbott, J., Boyse, J., Zayas, Z. A., and Thomas, L. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex.J. Exp. Med. 144:1324–1335.PubMedGoogle Scholar
  26. Yamazaki, K., Yamaguchi, M., Andrews, P. W., Peake, B., and Boyse, E. A. (1978). Mating preference of F2 segregants of crosses between MHC-congenic mouse strains.Immunogenetics 6:253–259.Google Scholar
  27. Yamazaki, K., Yamaguchi, M., Baranoski, L., Bard, L., Boyse, E. A., and Thomas, L. (1979). Recognition among mice: Evidence from the use of a Y-maze differentially scented by congenic mice of different major histocompatibility types.J. Exp. Med. 150:755–760.PubMedGoogle Scholar
  28. Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L., and Boyse, E. A. (1982). Chemosensory recognition of phenotypes determined by the Tla and H-2K regions of chromosome 17 of the mouse.Proc. Natl. Acad. Sci. USA 79:7828–7831.Google Scholar
  29. Yamazaki, K., Beauchamp, G. K., Egorov, I. K., Bard, J., Thomas, L., and Boyse, E. A. (1983). Sensory distinction between H-2b and H-2bml mutant mice.Proc. Natl. Acad. Sci. USA 80:5685–5688.PubMedGoogle Scholar
  30. Yamazaki, K., Beauchamp, G. K., Thomas, L., and Boyse, E. A. (1984). Chemosensory identity of H-2 heterozygotes.J. Mol. Cell Immunol 1:79–82.PubMedGoogle Scholar
  31. Yamazaki, K., Beauchamp, G. K., Kupniewski, D., Bard, J., Thomas, L., and Boyse, E. A. (1988). Familial imprinting determines H-2 selective mating preferences.Science 240:1331–1332.PubMedGoogle Scholar
  32. Yanai, J., and McClearn, G. E. (1972a). Assortative mating in mice. I. Female mating preference.Behav. Genet. 2:173–183.PubMedGoogle Scholar
  33. Yanai, J., and McClearn, G. E. (1972b). Assortative mating in mice and the incest taboo.Nature 238:281–282.Google Scholar
  34. Yanai, J., and McClearn, G. E. (1973a). Assortative mating in mice. II. Strain differences in female mating preference, male preference and the question of possible sexual selection.Behav. Genet. 3:65–74.PubMedGoogle Scholar
  35. Yanai, J., and McClearn, G. E. (1973b). Assortative mating in mice. III. Genetic determination of female mating preference.Behav. Genet. 3:75–84.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Gary K. Beauchamp
    • 1
  • Kunio Yamazaki
    • 1
  • Judith Bard
    • 2
  • Edward A. Boyse
    • 2
  1. 1.Monell Chemical Senses CenterPhiladelphia
  2. 2.Memorial Sloan-Kettering Cancer CenterNew York

Personalised recommendations