Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pharmacokinetic characterization of extracorporeal therapy

  • 29 Accesses

  • 5 Citations


The efficiency of extracorporeal therapy with immobilized enzymes (reactive devices) and hemoperfusion cartridges (nonreactive devices) is evaluated in terms of a new pharmacokinetic parameter, the bioefficacy. A detailed analysis is provided in the former case, and it is shown how the bioefficacy can be calculated from a combined pharmacokinetic and reactor analysis. The theory is presented for evaluating bioefficacy in terms of linear pharmacokinetic models that view the reactor or other extracorporeal appliance as an artificial organ. Examples are drawn from recent work on methotrexate rescue with immobilized carboxypeptidase G1 and from literature data on the use of hemoperfusion to treat drug overdose to illustrate the calculations.

This is a preview of subscription content, log in to check access.


  1. 1.

    T. M. S. Change (ed.).Biomedical Applications of Immobilized Enzymes and Proteins. Plenum Press, New York, 1977, Vols. I and II.

  2. 2.

    R. L. Capizzi, J. R. Bertino, and R. E. Handshumacher. L-Asparaginase.Annu. Rev. Med. 21:433–4444 (1970).

  3. 3.

    J. R. Bertino, M. Leavitt, J. L. McCullough, and B. A. Chabner. New approaches to chemotherapy with folate antagonists. Use of leucovorin rescue and enzymic folate depletion.Ann. N. Y. Acad. Sci. 186:486–495 (1971).

  4. 4.

    C. W. Abell, W. D. Stith, and D. S. Hodgins. The effects of phenylalanine ammonia-lyase on leukemic lymphocytesin vitro.Cancer Res. 32:285–290 (1972).

  5. 5.

    C. M. Ambrus, J. L. Ambrus, Cs. Horváth, H. Pedersen, S. Sharma, C. Kant, E. Mirand, R. Guthrie, and T. Paul. Phenylalanine depletion for the management of phenylketonuria: use of enzyme reactors with immobilized enzymes.Science 201:837–839 (1978).

  6. 6.

    J. R. Bertino, S. Condos, Cs. Horváth, K. Kalghatgi, and H. Pedersen. Immobilized carboxypeptidase G1 in methotrexate removal.Cancer Res. 38:1936–1941 (1978).

  7. 7.

    S. R. Jeffries, R. Richards, F. R. Bernath, and R. Joyeuse. Preliminary studies with L-asparaginase bound to implantable bovine collage heterografts: a potential long-term, sustained dosage, antitumor enzyme therapy system.Biomat., Med. Dev., Artif. Org. 5:337–354 (1977).

  8. 8.

    H. Pedersen, Cs. Horváth, and C. M. Ambrus. Preparation of immobilized L-phenylalanine ammonia-lyase in tubular form for depletion of L-phenylalanine.Res. Commun. Chem. Pathol. Pharmacol. 20:559–569 (1978).

  9. 9.

    H. Pedersen, Cs. Horváth, and J. R. Bertino. Immobilized enzymes in tubes and hollow fibers for clinical applications. In E. K. Pye and H. H. Weetal (eds.),Enzyme Engineering Plenum Press, New York, 1978, Vol. 3, pp. 397–408.

  10. 10.

    B. H. Barbour, A. M. LaSett, and A. Koffler. Fixed-bed charcoal hemoperfusion for the treatment of drug overdose.Kidney Int. 10:333–337 (1976).

  11. 11.

    G. DeGroot, R. A. Maes, and A. N. P. Van Heyst. The use of hemoperfusion in elimination of absorbed drug mixtures in acute intoxications.Neth. J. Med. 20:142–148 (1977).

  12. 12.

    M. C. Gelfrand, J. F. Winchester, J. H. Knepshield, K. M. Hanson, S. L. Cohan, B. S. Strauch, K. L. Geoly, A. C. Kennedy, and G. E. Schreiner. Treatment of severe drug overdosage with charcoal hemoperfusion.Trans. Am. Soc. Artif. Intern. Org. 23:599–604 (1977).

  13. 13.

    T. P. Gibson, S. D. Reich, F. A. Krumlovsky, and P. Ivanovich. Hemoperfusion for methotrexate removal.Clin. Pharmacal. Ther. 23:351–355 (1978).

  14. 14.

    J. L. Rosenbaum, M. S. Kramer, and R. Raja. Resin hemoperfusion for acute drug intoxication.Arch. Int. Med. 136:262–266 (1976).

  15. 15.

    J. F. Winchester, M. C. Gelfrand, and W. J. Tilstone. Hemoperfusion in drug intoxication. Clinical and laboratory aspects.Drug Metab. Rev. 8:69–104 (1978).

  16. 16.

    S. Pond, J. Rosenberg, N. L. Benowitz, and S. Takki. Pharmacokinetics of hemoperfusion for drug overdose.Clin. Pharmacokin. 4:329–354 (1979).

  17. 17.

    J. Wei. Compartmental and systemic level-times in a multicompartment system.Ind. Eng. Chem., Fundam. 16:19–21 (1977).

  18. 18.

    S. Katz. Chemical reactions catalyzed on a tube wall.Chem. Eng. Sci. 10:202–211 (1961).

  19. 19.

    J.-M. Engasser and Cs. Horváth. A simple additivity relation for analysis of heterogeneous catalytic reactors with first order reaction.Chem. Eng. Sci. 29:2259–2262 (1974).

  20. 20.

    Cs. Horváth, L. H. Shendalman, and R. T. Light. Open tubular heterogeneous enzyme reactors: analysis of a theoretical model.Chem. Eng. Sci. 28:375–388 (1973).

  21. 21.

    L. R. Waterland, A. S. Michaels, and C. R. Robertson. A theoretical model for enzymatic catalysis using asymmetric hollow fiber membranes.A.I.Ch. E. J. 20:50–59 (1974).

  22. 22.

    S.-S. Kim and D. O. Cooney. An improved theoretical model for hollow-fiber enzyme reactors.Chem. Eng. Sci. 31:289–294 (1976).

  23. 23.

    R. E. Treybal.Mass Transfer Operations, 3rd ed. McGraw-Hill, New York, 1980.

  24. 24.

    J. R. Bertino, R. Skeel, D. Makalu, S. McIntosh, J. Uhoch, and B. A. Chabner. Initial clinical studies with carboxypeptidase G1 (CPG1), a folate depleting enzyme.Clin. Res. 22:483A (1974).

  25. 25.

    J. L. McCullough, B. A. Chabner, and J. R. Bertino. Purification and properties of carboxypeptidase G1.J. Biol. Chem. 246:7203–7213 (1971).

  26. 26.

    A. L. Cowles, H. H. Borgstedt, and A. J. Gillies. Tissue weights and rates of blood flow in man for the prediction of anesthetic uptake and distribution.Anesthesiology 35:523–526(1971).

  27. 27.

    K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth, Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1134 (1971).

  28. 28.

    T. Marbury, J. Mahoney, T. Fuller, L. Juncos, and R. Cade. Treatment of amitriptyline overdosage with charcoal hemoperfusion.Kidney Int. 12:485 (1977).

  29. 29.

    J. A. P. Trafford, R. H. Jones, R. Evans, P. Sharp, P. Sharpstone, and J. Cook. Hemoperfusion with R-004 Amberlite resin for treating acute poisoning.Br. Med. J. 2:1453–1456 (1977).

  30. 30.

    S. M. Ehlers, D. E. Zaske, and R. J. Sawchuk. Massive theophylline overdose.J. Am. Med. Assoc. 240:474–475 (1978).

  31. 31.

    M. E. Russo. Management of theophylline intoxication with charcoal column hemoperfusion.N. Engl. J. Med. 300:24–26 (1979).

  32. 32.

    C. Lawyer, J. Atchison, J. Sutton, and W. Bennett. Treatment of theophylline neurotoxicity with resin hemoperfusion.Ann. Int. Med. 88:516–517 (1978).

  33. 33.

    K. T. Muir and S. Pond. Removal of theophylline from the body by hemoperfusion.Clin. Pharmacokin. 4:320–321 (1979).

  34. 34.

    A. Jørgensen and V. Hansen. Pharmacokinetics of amitriptyline infused intravenously in man.Eur. J. Clin. Pharmacol. 10:337–341 (1976).

  35. 35.

    P. A. Mitenko and R. I. Ogilvie. Pharmacokinetics of intravenous theophylline.Clin. Pharm. Ther. 14:509–513 (1973).

Download references

Author information

Additional information

This work was supported by a grant No. CA 28037 from the National Institute of Health and by a grant from the Donors of the Petroleum Research Fund, administered by the American Chemical Society.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pedersen, H., Horváth, C. Pharmacokinetic characterization of extracorporeal therapy. Journal of Pharmacokinetics and Biopharmaceutics 10, 437–454 (1982). https://doi.org/10.1007/BF01065174

Download citation

Key words

  • bioefficacy
  • enzyme therapy
  • immobilized enzymes
  • artificial organs
  • hemoperfusion