Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ketamine and midazolam decrease cerebral blood flow and consequently their own rate of transport to the brain: An application of mass balance pharmacokinetics with a changing regional blood flow

  • 78 Accesses

  • 34 Citations


Mass balance pharmacokinetics, with simultaneous blood sampling from an artery and the internal jugular vein, was used to characterize the cerebral uptake of ketamine, norketamine, and midazolam in normoventilated pigs. Intravenous injections of ketamine or midazolam decreased the cerebral blood flow (CBF)by one third, as measured by intermittent 133Xewashout. By means of pharmacodynamic models, the effects on the CBFcould be predicted from the arterial drug concentrations. The high-resolution CBFvs. time curves thus generated allowed the calculation of cerebral drug levels from arteriovenous concentration gradients in spite of a continuously changing regional blood flow. By their effects on the CBF,ketamine and midazolam decreasetheir own rateof transport to the brain, the immediate 30-35% drops in CBFgiving similar reductions in initial net influx of drug. Physiological pharmacokinetic models assuming a constant regional blood flow are therefore not appropriate. Under clinical conditions, the CBFis determined mainly by the effects of the anesthetics and by the arterial CO 2 tension. CBFchanges in either direction influence the transport of drugs to the brain and may consequently result in impaired or exaggerated drug effects.

This is a preview of subscription content, log in to check access.


  1. 1.

    R. N. Upton, L. E. Mather, W. B. Runciman, C. Nancarrow, and R. J. Carapetis. The use of mass balance principles to describe regional drug distribution and elimination.J. Pharmacokin. Biopharm. 16:13–29 (1988).

  2. 2.

    R. N. Upton, W. B. Runciman, L. E. Mather, C. F. McLean, and A. H. Ilsley. The uptake and elution of lignocaine and procainamide in the hindquarters of the sheep described using mass balance principles.J. Pharmacokin. Biopharm. 16:31–40 (1988).

  3. 3.

    R. N. Upton, W. B. Runciman, and L. E. Mather. Regional pharmacokinetics III. Modelling methods.Biopharm. Drug Disp. 12:1–15 (1991).

  4. 4.

    J. D. Horowitz, M. K. Dynon, E. Woodward, S. T. Benjamin Sia, P. S. MacDonald, D. J. Morgan, A. J. Goble, and W. J. Louis. Short-term myocardial uptake of lidocaine and mexiletine in patients with ischemic heart disease.Circulation 73:987–996 (1986).

  5. 5.

    H. Herrschaft, and H. Schmidt. Das Verhalten der globalen und regionalen Hirn-durchblutung unter dem Einfiuss von Propanidid, Ketamine und Thiopental-Natrium.Anaesthetist 22:486–495 (1973).

  6. 6.

    W. J. Tranquilli, J. C. Thurmon, and G. J. Benson. Organ blood flow and distribution of cardiac output in hypocapnic ketamine-anesthetized swine.Am. J. Vet. Res. 44: 1578–1582 (1983).

  7. 7.

    M. Nugent, A. A. Artru, and J. D. Michenfelder, Cerebral metabolic, vascular and protective effects of midazolam maleate.Anesthesiology 56:172–176 (1982).

  8. 8.

    A. Forster, O. Juge, and D. Morel. Effects of midazolam on cerebral blood flow in human volunteers.Anesthesiology 56:453–455 (1982).

  9. 9.

    J. E. Fleischer, J. H. Milde, T. P. Moyer, and J. D. Michenfelder. Cerebral effects of high-dose midazolam and subsequent reversal with Ro 15-1788 in dogs.Anesthesiology 68:234–242 (1988).

  10. 10.

    J. åkeson, F. Nilsson, E. Ryding, and K. Messeter. A porcine model for sequential assessments of cerebral haemodynamics and metabolism.Acta Anaesthesiol. Scand. 36:419–426 (1992).

  11. 11.

    J. Olesen, O. B. Paulson, and N. A. Lassen. Regional cerebral blood flow in man determined by the initial slope of the clearance of intra-arterially injected133Xe.Stroke 2:519–540 (1971).

  12. 12.

    T. Chang, and A. J. Glazko. A gas Chromatographic assay for ketamine in human plasma.Anesthesiology 36:401–404 (1972).

  13. 13.

    P. J. Howard, E. McClean, and J. W. Dundee. The estimation of midazolam, a watersoluble benzodiazepine by gas liquid chromatography.Anesthesia 40:664–668 (1985).

  14. 14.

    H-S. G. Chen, and J. F. Gross. Estimation of tissue-to-plasma partition coefficients used in physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 7:117–125 (1979).

  15. 15.

    H. L. Price, J. W. Dundee, and E. H. Conner. Rates of uptake and release of thiopental by human brain; relation to kinetics of thiopental anesthesia.Anesthesiology 18:171 (1957).

  16. 16.

    T. Ferrer-Allado, V. L. Brechner, A. Dymond, H. Cozen, and P. Crandall. Ketamineinduced electroconvulsive phenomena in the human limbic and thalamic regions.Anes-thesiology 38:333–344 (1973).

  17. 17.

    M. Schwedler, D. J. Miletich, and R. F. Albrecht. Cerebral blood flow and metabolism following ketamine administration.Can. Anaesth. Soc. J. 29:222–225 (1982).

  18. 18.

    M. L. Cohen, S-L. Chan, W. L. Way, and A. J. Trevor. Distribution in the brain and metabolism of ketamine in the rat after intravenous administration.Anesthesiology 39:370–376 (1973).

  19. 19.

    A. Livingston, and A. E. Waterman. The development of tolerance to ketamine in rats and the significance of hepatic metabolism.Br. J. Pharmacol. 64:63–69 (1978).

  20. 20.

    C. C. Hug. Lipid solubility, pharmacokinetics, and the EEG: are you better off today than you were four years ago?Anesthesiology 62:221–226 (1985).

  21. 21.

    M. Bührer, P. O. Maitre, C. Crevoisier, and D. R. Stanski. Electroencephalographic effects of benzodiazepines. II. Pharmacodynamic modeling of the electroencephalographic effects of midazolam and diazepam.Clin. Pharmacol. Ther. 48:555–567 (1990).

  22. 22.

    W. W. Mapleson. Circulation-time models of the uptake of inhaled anaesthetics and data for quantifying them.Br. J. Anaesth. 45:319–334 (1973).

Download references

Author information

Correspondence to Sven Björkman.

Additional information

The study was supported by grants from the Swedish Medical Research Council (B91-14X-00084-27A), the Medical Faculty at Lund University, Malmö General Hospital, The Tore Nilsson Foundation for Medical Research, Warner-Lambert Scandinavia AB, Roche-Produkter AB, and the Laerdal Foundation for Acute Medicine.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Björkman, S., åkeson, J., Nilsson, F. et al. Ketamine and midazolam decrease cerebral blood flow and consequently their own rate of transport to the brain: An application of mass balance pharmacokinetics with a changing regional blood flow. Journal of Pharmacokinetics and Biopharmaceutics 20, 637–652 (1992). https://doi.org/10.1007/BF01064423

Download citation

Key words

  • ketamine
  • midazolam
  • mass balance
  • brain
  • cerebral blood flow