Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

  • Transport Processes, Metabolism And Endocrinology; Kidney, Gastrointestinal Tract, And Exocrine Glands
  • Published:

The early phase of experimental acute renal failure

II. Tubular leakage and the reliability of glomerular markers

Summary

Experiments were designed to determine whether leakage of substances across the tubular epithelium, which are impermeant in the normal kidney, falsifies the measurement of glomerular filtration rate in acute renal failure. Permeability to those substances most commonly used for filtration rate determination, polyfructosan, inulin and ferrocyanide, was estimated by measuring their recoveries following perfusion through various nephron segments in haeme pigment, ischaemic and nephrotoxic models of actue renal failure. Late proximal recovery of14C ferrocyanide was only marginally decreased compared to controls, by a maximum of 6%. Distal recovery of polyfructosan,14C and3H inulin were depressed somewhat more, by a maximum of 11%. Urinary recovery of14C inulin was reduced by only 15% in kidneys showing severely restricted renal function. It is concluded that tubular leakage is not a feature of significance in the early phase of moderate acute renal failure, that ferrocyanide and inulin are reliable markers for the determination of nephron filtration rate and water reabsorption, and that the reduction in whole kidney inulin or polyfructosan clearance reflects primarily a reduction in glomerular filtration rate.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bank, N., Mutz, B. F., Aynedjian, H. S.: The role of “leakage” of tubular fluid in anuria due to mercury poisoning. J. Clin. Invest.46, 695–704 (1967)

  2. 2.

    Barenberg, R. L., Solomon, S., Papper, S., Anderson, R.: Clearance and micropuncture study of renal function in mercuric chloride treated rats. J. Lab. Clin. Med.72, 473–484 (1968)

  3. 3.

    Biber, T. U. L., Mylle, M. M. A., Baines, A. D., Gottschalk, C. W., Oliver, J. R., MacDowell, M. C.: A study by micropuncture and microdissection of acute renal damage in rats. Am. J. Med.44, 664–705 (1968)

  4. 4.

    Blantz, R. C.: The mechanism of acute renal failure after uranyl nitrate. J. Clin. Invest.55, 621–635 (1975)

  5. 5.

    Daugharty, T. M., Ueki, I. F., Mercer, P. M., Brenner, B. M.: Dynamics of glomerular ultrafiltration in the rat. V. Response to ischemic injury. J. Clin. Invest.53, 105–116 (1974)

  6. 6.

    Eisenbach, G. M., Steinhausen, M.: Micropuncture studies after temporary ischemia of rat kidneys. Pflügers Arch.343, 11–25 (1973)

  7. 7.

    Flamenbaum, W., McDonald, F. D., DiBona, G. F., Oken, D. E.: Micropuncture study of renal tubular factors in low dose mercury poisoning. Nephron8, 221–234 (1971)

  8. 8.

    Flamenbaum, W., Hamburger, R. J., Huddleston, M. L., Kaufman, J., McNeil, J. S., Schwartz, J. H., Nagle, R.: The initiation phase of experimental acute renal failure: An evaluation of uranyl mitrate-induced acute renal failure in the rat. Kidney Int.10, Suppl. 6, 115–122 (1976)

  9. 9.

    Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelectrolyte im proximalen und distalen Konvolute der Rattenniere. Pflügers Arch.276, 336–356 (1963)

  10. 10.

    Gottschalk, C. W., Morel, F., Mylle, M.: Tracer microinjection studies of renal tubular permeability. Am. J. Physiol.209, 173–178 (1965)

  11. 11.

    Hanssen, O. E.: The relationship between glomerular filtration and length of the proximal convoluted tubules in mice. Acta Path. Microbiol. Scand.53, 265 (1961)

  12. 12.

    Hayman, J. M., Shumway, N. P., Dumke, P. P., Miller, M.: Experimental hyposthenuria. Clin. Invest.18, 195–212 (1939)

  13. 13.

    Hilger, H. H., Klümper, D., Ulrich, K. J.: Wasserrückresorption und Ionentrasport durch die Sammelrohrzelle der Säugetierniere. Pflügers Arch.267, 218 (1958)

  14. 14.

    Lorentz, W. B., Lassiter, W. E., Gottschalk, C. W.: Renal tubular permeability during increased intrarenal pressure. J. Clin. Invest.51, 484–492 (1972)

  15. 15.

    Mason, J., Olbricht, C., Takabatake, T., Thurau, K.: The early phase of experimental acute renal failure. I. Intratubular pressure and obstruction. Pflügers Arch.370, 155–163 (1977)

  16. 16.

    Nomiyama, K., Foulkes, E. C.: Some effects of uranyl acetate on proximal tubular function in rabbit kidney. Toxicol. Appl. Pharmacol.13, 89–98 (1968)

  17. 17.

    Oken, D. E.: On the passive back flow theory of acute renal failure. Am. J. Med.58, 77–82 (1975)

  18. 18.

    Stein, J. H., Gottschall, J., Osgood, R. W., Ferris, T. F.: Pathophysiology of a nephrotoxic model of acute renal failure. Kidney Int.8, 27–41 (1975)

  19. 19.

    Steinhausen, M., Eisenbach, G. M., Helmstädter, V.: Concentration of lissamine green in proximal tubules of antidiuretic and mercury poisoned rats and the permeability of these tubules. Pflügers Arch.311, 1–15 (1969)

  20. 20.

    Tanner, G. A., Sloan, K. L., Sophasan, S.: Effects of renal artery occlusion on kidney function in the rat. Kidney Int.4, 377–389 (1973)

  21. 21.

    Thiel, G., Hugenin, M., Brunner, E., Peters, L., Peters, G., Eckert, H., Torhorst, J., Rohr, H. P.: Etude du mecanisme de l'insuffisance renale aigue a HgCl2 chez le rat. J. Urol. Nephrol.79, 967–977 (1973)

Download references

Author information

Correspondence to June Mason.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olbricht, C., Mason, J., Takabatake, T. et al. The early phase of experimental acute renal failure. Pflugers Arch. 372, 251–258 (1977). https://doi.org/10.1007/BF01063860

Download citation

Key words

  • Acute renal failure
  • Tubular leakage
  • Proximal ferrocyanide recovery
  • Distal inulin recovery
  • Urinary inulin recovery