Convergence to equilibrium for delay-diffusion equations with small delay

  • Gero Friesecke
Article

Abstract

It is shown that for scalar dissipative delay-diffusion equationsutΔu=f(u(t),u(t−τ)) with a small delay, all solutions are asymptotic to the set of equilibria ast tends to infinity.

Key words

Parabolic equations with time delay asymptotic behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fitzgibbon, W. E. (1978). Semilinear functional differential equations in Banach space.J. Diff. Eq. 29, 1–14.Google Scholar
  2. 2.
    Friesecke, G. (1992). Exponentially growing solutions for a delay-diffusion equation with negative feedback.J. Diff. Eq. 98, 1–18.Google Scholar
  3. 3.
    Green, D., and Stech, H. W. (1981). Diffusion and hereditary effects in a class of population models.Diff. Eq. Appl. Ecol. Epidem. Popul. Problems, 19–28.Google Scholar
  4. 4.
    Hale, J. (1988). Asymptotic behavior of dissipative systems.Math. Surv. Monogr. AMS, Vol. 20.Google Scholar
  5. 5.
    Hale, J. (1977).Theory of Functional Differential Equations, Springer Applied Mathematical Sciences, Vol. 3.Google Scholar
  6. 6.
    Henry, D. (1981).Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics, Vol. 840.Google Scholar
  7. 7.
    Hutchinson, G. E. (1948). Circular causal systems in ecology.Ann. N. Y. Acad. Sci. 50, 221–246.Google Scholar
  8. 8.
    Inoue, A., Miyakawa, T., and Yoshida, K. (1977). Some properties of solutions for semilinear heat equations with time lag.J. Diff. Eq. 24, 383–396.Google Scholar
  9. 9.
    Lighbourne, J. H., and Rankin, S. M. (1981). Global existence for a delay differential equationJ. Diff. Eq. 40, 186–192.Google Scholar
  10. 10.
    Lions, J. L. (1969).Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod.Google Scholar
  11. 11.
    Luckhaus, S. (1986). Global boundedness for a delay differential equation.Trans. AMS 294, 767–774.Google Scholar
  12. 12.
    Paret-Mallet, J. (1988). Morse decompositions for delay differential equations.J. Diff. Eq. 72, 270–315.Google Scholar
  13. 13.
    Matano, H. (1979). Asymptotic behavior and stability of solutions of semilinear diffusion equations.Publ. Res. Inst. Math. Sci. 15, 401–458.Google Scholar
  14. 14.
    Memory, M. (1989). Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion.SIAM J. Math. Anal. 20, 533–546.Google Scholar
  15. 15.
    Memory, M. (1991). Stable and unstable manifolds for partial functional differential equations.Nonlin. Anal. 16, 131–142.Google Scholar
  16. 16.
    Mielke, A. (1987). Über maximaleL p-Regularität für Differentialgleichungen in Banachund Hubert-Räumen.Math. Ann.,277, 121–133.Google Scholar
  17. 17.
    Travis, C. C., and Webb, G. F. (1974). Existence and stability for partial functional differential equations.Trans. AMS 200, 395–418.Google Scholar
  18. 18.
    Yoshida, K. (1982). The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology.Hiroshima Math. J. 12, 321–348.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Gero Friesecke
    • 1
  1. 1.Institut für Angewandte MathematikUniversität BonnFederal Republic of Germany

Personalised recommendations