Carrier-mediated transport in the hepatic distribution and elimination of drugs, with special reference to the category of organic cations

  • Dirk K. F. Meijer
  • Wim E. M. Mol
  • Michael Müller
  • Gerhart Kurz


Carrier-mediated transport of drugs occurs in various tissues in the body and may largely affect the rate of distribution and elimination. Saturable translocation mechanisms allowing competitive interactions have been identified in the kidneys (tubular secretion), mucosal cells in the gut (intestinal absorption and secretion), choroid plexus (removal of drug from the cerebrospinal fluid), and liver (hepatobiliary excretion). Drugs with quaternary and tertiary amine groups represent the large category of organic cations that can be transported via such mechanisms. The hepatic and to a lesser extent the intestinal cation carrier systems preferentially recognize relatively large molecular weight amphipathic compounds. In the case of multivalent cationic drugs, efficient transport only occurs if large hydrophobic ring structures provide a sufficient lipophilicity-hydrophilicity balance within the drug molecule. At least two separate carrier systems for hepatic uptake of organic cations have been identified through kinetic and photoaffinity labeling studies. In addition absorptive endocytosis may play a role that along with proton-antiport systems and membrane potential driven transport may lead to intracellular sequestration in lysosomes and mitochondria. Concentration gradients of inorganic ions may represent the driving forces for hepatic uptake and biliary excretion of drugs. Recent studies that aim to the identification of potential membrane carrier proteins indicate multiple carriers for organic anions, cations, and uncharged compounds with molecular weights around 50,000 Da. They may represent a family of closely related proteins exhibiting overlapping substrate specificity or, alternatively, an aspecific transport system that mediates translocation of various forms of drugs coupled with inorganic ions. Consequently, extensive pharmacokinetic interactions can be anticipated at the level of uptake and secretion of drugs regardless of their charge.

Key words

carrier-mediated transport organic cations cationic drugs hepatobiliary elimination hepatic distribution drug interactions structure-pharmacokinetic relationship multiplicity in carrier proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. K. F. Meijer. Current concepts on hepatic transport of drugs.J. Hepatol. 4:259–268 (1987).PubMedGoogle Scholar
  2. 2.
    D. K. F. Meijer. Transport and metabolism in the hepatobiliary system. In J. G. Forte (ed.),Handbook of Physiology, Section 6, The Gastrointestinal System, Oxford University Press, New York, New York, pp. 717–758 (1989).Google Scholar
  3. 3.
    A. Somogyi. New insights into the renal secretion of drugs.Trends Pharmacol. Sci. 8:354–357 (1987).Google Scholar
  4. 4.
    I. M. Weiner. Organic acids and bases and uric acid. In D. W. Seldin and G. L. Giebisch (eds.),The Kidney, Physiology and Pathophysiology, Raven Press, New York, 1985, pp. 1703–1724.Google Scholar
  5. 5.
    L. S. Schanker. Transport of drugs. In L. E. Hokin (ed.),Metabolic Pathways. Metabolic Transport, Vol. 4, Academic Press, London, England, 1972, pp. 543–579.Google Scholar
  6. 6.
    F. Lauterbach. Intestinal secretion of organic ions and drugs. In M. Kramer (ed.),Intestinal Permeation, Excerpta Medica, Amsterdam, The Netherlands, 1977, pp. 173–195.Google Scholar
  7. 7.
    C. D. Klaassen and J. B. Watkins. Mechanisms of bile formation, hepatic uptake and biliary excretion.Pharmacol. Rev. 36:1–67 (1984).PubMedGoogle Scholar
  8. 8.
    D. K. F. Meijer. The mechanisms for hepatic uptake and biliary excretion of organic cations. In M. Kramer (ed.),Intestinal Permeation, Excerpta Medica, Amsterdam, The Netherlands, 1977, pp. 196–209.Google Scholar
  9. 9.
    C. Neef, R. Oosting, and D. K. F. Meijer. Structure-pharmacokinetics relationship of quaternary ammonium compounds. Elimination and distribution characteristics.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 328:103–110 (1984).Google Scholar
  10. 10.
    C. Neef and D. K. F. Meijer. Structure-pharmacokinetics relationship of quaternary ammonium compounds. Correlation of physicochemical and pharmacokinetic parameters.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 328:111–118 (1984).Google Scholar
  11. 11.
    P. C. Hirom, R. D. Hughes, and P. Millburn. The physicochemical factor required for the biliary excretion of organic cations and anions.Biochem. Soc. Trans.,2:327–330 (1974).Google Scholar
  12. 12.
    R. D. Hughes, P. Millburn, and R. T. Williams. Molecular weight as a factor in the excretion of monoquaternary ammonium cations in the bile of the rat, rabbit and guinea pig.Biochem. J. 136:967–978 (1973).PubMedCentralPubMedGoogle Scholar
  13. 13.
    O. Wassermann. Influence of substituents on pharmacokinetics of bisquaternary ammonium compounds.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 270(Suppl.)R: 154 (1971).Google Scholar
  14. 14.
    R. D. Hughes, P. Millburn, and R. T. Williams. Biliary excretion of some diquaternary ammonium cations in the rat, guinea pig and rabbit.Biochem. J. 136:979–984 (1973).PubMedCentralPubMedGoogle Scholar
  15. 15.
    D. L. Eaton and C. D. Klaassen. Carrier-mediated transport of the organic cation procaine amide ethobromide by isolated rat liver parenchymal cells.J. Pharmacol. Exp. Ther. 206:595–606 (1978).PubMedGoogle Scholar
  16. 16.
    S. W. Hwang and L. S. Schanker. Hepatic uptake and biliary excretion of N-acetyl procainamide ethobromide in the rat.Am. J. Physiol. 225:1437–1443 (1973).PubMedGoogle Scholar
  17. 17.
    D. K. F. Meijer, E. S. Bos, and K. J. van der Laan. Hepatic transport of mono- and bisquaternary ammonium compounds.Eur. J. Pharmacol. 11:371–377 (1970).PubMedGoogle Scholar
  18. 18.
    H. Nakae, K. Takada, S. Asada, and S. Muranishi. Transport rates of heptatic uptake and biliary excretion of an organic cation, acetyl procainamide ethobromide.Biochem. Pharmacol. 29:2573–2576 (1980).PubMedGoogle Scholar
  19. 19.
    H. Nakae, S. Muranishi, S. Asada, and K. Takada. Pharmacokinetic study on saturated hepatobiliary transport of acetyl procainamide ethobromide.J. Pharmacobiodyn. 4:584–589 (1981).PubMedGoogle Scholar
  20. 20.
    H. Nakae, R. Sakata, and S. Muranishi. Biopharmaceutical study of the hepatobiliary transport of drugs. V. Hepatic uptake and biliary excretion of organic cations.Chem. Pharm. Bull. 24:886–893 (1976).PubMedGoogle Scholar
  21. 21.
    L. S. Schanker and H. M. Solomon. Active transport of quaternary ammonium compounds into bile.Am. J. Physiol. 204:829–832 (1963).PubMedGoogle Scholar
  22. 22.
    H. M. Solomon and L. S. Schanker. Hepatic transport of organic cations: active uptake of a quaternary ammonium compound, procainamide ethobromide, by rat liver slices.Biochem. Pharmacol. 12:621–626 (1963).PubMedGoogle Scholar
  23. 23.
    K. Yoshioka. Some properties of the thiamine uptake system in isolated rat hepatocytes.Biochim. Biophys. Acta 778:201–209 (1984).PubMedGoogle Scholar
  24. 24.
    D. K. F. Meijer, J. Wester, and M. Gunnik. Distribution of quaternary ammonium compounds between particulate and soluble constituents of rat liver, in relation to their transport from plasma into bile.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 273:179–192 (1972).Google Scholar
  25. 25.
    J. T. MacGregor and A. Burkhalter. Biliary excretion of nicotinamide riboside. A possible role in the regulation of hepatic pyridine nucleotide dynamics.Biochem. Pharmacol. 22:2645–2658 (1973).PubMedGoogle Scholar
  26. 26.
    L. S. Schanker. Concentrative transfer of an organic cation from the blood into the bile.Biochem. Pharmacol. 11:253–254 (1962).PubMedGoogle Scholar
  27. 27.
    L. S. Schanker. Hepatic transport of organic cations. In W. Taylor (ed.),The Biliary System, Blackwell, Oxford, England, 1965, pp. 469–480.Google Scholar
  28. 28.
    E. N. Cohen, H. W. Brewer, and D. Smith. The metabolism and elimination of d-tubocurarine-3H.Anesthesiology 28:309–317 (1967).PubMedGoogle Scholar
  29. 29.
    C. Neef, K. T. P. Keulernans, and D. K. F. Meijer. Hepatic uptake and biliary excretion of organic cations. I. Characterization of three new model compounds.Biochem. Pharmnacol. 33:3977–3990 (1984).Google Scholar
  30. 30.
    R. J. Vonk, E. Scholtens, G. T. P. Keulemans, and D. K. F. Meijer. Choleresis and hepatic transport mechanisms. IV. Influence of bile salts on the hepatic transport of the organic cations, d-tubocurarine and N4-acetylprocainamide ethobromide.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 302:1–9 (1978).Google Scholar
  31. 31.
    B. R. Rennick. Renal tubule transport of organic cations.Am. J. Physiol. 240:F83-F89 (1981).PubMedGoogle Scholar
  32. 32.
    F. Lauterbach. Intestinal permeation of organic bases and quaternary ammonium compounds. In T. Z. Csaky (ed.),Handbook of Experimental Pharmacology: Vol. 70/II. Pharmacology of Intestinal Permeation, Springer-Verlag, Berlin, FRG, 1984, pp. 271–284.Google Scholar
  33. 33.
    R. L. Smith. Excretion of drugs in bile. In B. B. Brodie and J. R. Guette (eds.),Handbook of Experimental Pharmacology, Springer-Verlag, Berlin, FRG., 1971, pp. 354–389.Google Scholar
  34. 34.
    H. Tsubaki, E. Nakajama, E. Shigehara, T. Komai, and H. Shindo. The relation between structure and distribution of quaternary ammonium ions in mice and rats. Simple tetraalkylammonium and a series of m-substituted trimethylphenylammonium ions.J. Pharmacobiodyn. 9:737–746 (1986).PubMedGoogle Scholar
  35. 35.
    K. Neef, J. H. G. Jonkman, and D. K. F. Meijer. Hepatic disposition and biliary excretion of the organic cations thiazinamium and thiazinamium sulfoxide in rats.J. Pharm. Sci. 67:1147–1150 (1978).PubMedGoogle Scholar
  36. 36.
    K. G. Feitsma, B. F. H. Drenth, R. A. de Zeeuw, R. Oosting, and D. K. F. Meijer. Unequal disposition of enantiomers of the organic cation oxyphenonium in the rat isolated perfused liver.J. Pharm. Pharmacol. 41:27–31 (1989).PubMedGoogle Scholar
  37. 37.
    P. P. Sokol, P. D. Holohan, and C. D. Ross. The neurotoxins 1-methyl-4-phenylpyridinium and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine are substrates for the organic cation transporter in renal brush border membrane vesicles.J. Pharmacol. Exp. Ther. 242:152–157 (1987).PubMedGoogle Scholar
  38. 38.
    F. Lauterbach. Uptake and secretion of quaternary ammonium compounds organic acids and steroids by enterocytes. In D. L. Yudelevich and G. E. Mann (eds.),Carrier Mediated Transport of Solutes From Blood to Tissue, Longman, London, England, 1985.Google Scholar
  39. 39.
    K. Turnheim and F. Lauterbach. Absorption and secretion of monoquaternary ammonium compounds in the isolated intestinal mucosa.Biochem. Pharmacol. 26:99–108 (1977).PubMedGoogle Scholar
  40. 40.
    M. Gibaldi, G. Levy, and W. Hayton. Kinetics of the elimination and neuromuscular blocking effect of d-tubocurarine in man.Anesthesiology 36:213–218 (1972).PubMedGoogle Scholar
  41. 41.
    C. S. Reilly and W. S. Nimmo. New intravenous anaesthetics and neuromuscular blocking drugs: A review of their properties and clinical use.Drugs 34:98–135 (1987).PubMedGoogle Scholar
  42. 42.
    M. I. Ramzam, A. A. Somoggi, J. S. Walker, C. A. Shanks, and E. J. Triggs. Clinical pharmacokinetics of nondepolarizing muscle relaxants.Clin. Pharmacokin. 6:25–60 (1981).Google Scholar
  43. 43.
    P. Duvaldestin. Pharmacokinetics in intravenous anaesthetic practice.Clin. Pharmacokin. 6:61–82 (1981).Google Scholar
  44. 44.
    W. Hespe and J. Wieriks. Metabolic fate of the shortacting peripheral neuromuscular blocking agent stercuronium in the rat, as related to its action.Biochem. Pharmacol. 20:1213–1224 (1971).PubMedGoogle Scholar
  45. 45.
    G. D. Olsen, E. M. Chan, and W. K. Riker. Binding of d-tubocurarine di(methyl-14C)ether iodide and other amines to cartilage, chondroitin sulfate and human plasma proteins.J. Pharmacol. Exp. Ther. 195:242–250 (1975).PubMedGoogle Scholar
  46. 46.
    H. Shindo, E. Nakajima, N. Miyakoshi, and E. Shigehara. Autoradiographic studies on the distribution of quaternary ammonium compounds. III. Distribution, excretion and metabolism of14C-labeled pancuronium bromide in rats.Chem. Pharm. Bull. 22:2502–2510 (1974).PubMedGoogle Scholar
  47. 47.
    P. G. Waser. Localization of14C-Pancuronium by histo- and wholebody-autoradiography in normal and pregnant mice.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmacol. 279:399–412 (1973).PubMedGoogle Scholar
  48. 48.
    P. G. Waser, H. Wiederkehr, A. C. Sin-Ren, and E. Kaiser-Schönenberger. Distribution and kinetics of14C-vecuronium in rats and mice.Br. J. Anaesth. 59:1044–1051 (1987).PubMedGoogle Scholar
  49. 49.
    S. Agoston, E. J. Crul, U. W. Kersten, M. S. Houwertjes, and A. H. J. Scaf. The relationship between disposition and duration of action of a congeneric series of steroidal neuromuscular blocking agents.Acta Anaesth. Scand. 21:24–30 (1977).PubMedGoogle Scholar
  50. 50.
    R. D. Miller, S. Agoston, L. H. D. J. Booij, U. W. Kersten, J. F. Crul, and J. Ham. The comparative potency and pharmacokinetics of pancuronium and its metabolites in anaesthetized man.J. Pharmacol. Exp. Ther. 207:539–543 (1978).PubMedGoogle Scholar
  51. 51.
    Y. J. Sohn, A. Bencini, A. H. J. Scaf, U. W. Kersten, S. Gregoretti, and S. Agoston. Pharmacokinetics of vecuronium in man.Anesthesiology 57:A256 (1982).Google Scholar
  52. 52.
    R. Hughes and D. J. Chapple. The pharmacology of atracurium: a new competitive neuromuscular blocking agent.Br. J. Anaesth. 53:31–44 (1981).PubMedGoogle Scholar
  53. 53.
    V. Nigrovic and S. Smith. Involvement of nucleophiles in the inactivation of atracurium.Br. J. Anaesth. 59:617–621 (1987).PubMedGoogle Scholar
  54. 54.
    S. Agoston, G. A. Vermeer, U. W. Kersten, and A. H. J. Scaf, A preliminary investigation of the renal and hepatic excretion of gallamine triethiodide in man.Br. J. Anaesth. 50:345–351 (1978).PubMedGoogle Scholar
  55. 55.
    J. Raaflaub and P. Frey. Zur Pharmacokinetik von Diallyl-nortoxiferin beim Menschen.Arzneim.-Forsch. 22:73–78 (1972).Google Scholar
  56. 56.
    D. K. F. Meijer, J. G. Weitering, G. A. Vermeer, and A. H. J. Scaf. Comparative pharmacokinetics of d-tubocurarine and metocurine in man.Anesthesiology 51:402–407 (1979).PubMedGoogle Scholar
  57. 57.
    S. Agoston, G. A. Vermeer, U. W. Kersten, and D. K. F. Meijer. The fate of pancuronium bromide in man.Acta Anaesth. Scand. 17:267–275 (1973).PubMedGoogle Scholar
  58. 58.
    S. Agoston, R. H. G. van den Brom, J. M. K. H. Wierda, M. C. Houwertjes, and U. W. Kersten. Pharmacokinetics and disposition of pipecurium bromide in the cat.Eur. J. Anaesth. 5:233–242 (1988).Google Scholar
  59. 59.
    L. Vereczkey and L. Szporney. Disposition of pipecurium bromide in rats.Arzneim. Forsch. 30:364–366 (1980).Google Scholar
  60. 60.
    H. Singh and A. K. Chaudhary. Pharmacokinetics and disposition of chandonium iodide in rat.Indian J. Pharmacol. 23:253–257 (1985).Google Scholar
  61. 61.
    A. F. Bencini, A. H. F. Scaf, Y. J. Sohn, U. W. Kersten-Kleef, and S. Agoston. Hepatobiliary disposition of vecuronium bromide in man.Br. J. Anaesth. 58:988–995 (1986).PubMedGoogle Scholar
  62. 62.
    A. F. Bencini, M. C. Houwertjes, and S. Agoston. Effects of hepatic uptake of vecuronium bromide and its putative metabolites on their neuromuscular blocking actions in the cat.Br. J. Anaesth. 57:789–795 (1985).PubMedGoogle Scholar
  63. 63.
    D. K. F. Meijer, G. A. Vermeer, and G. Kwant. The excretion of hexafluorenium in man and rat.Eur. J. Pharmacol. 14:280–285 (1971).PubMedGoogle Scholar
  64. 64.
    L. H. D. J. Booij. Influence of renal and hepatic function on pharmacodynamics and Pharmacokinetics of non-depolarizing muscle relaxants.Pharm. Weekblad. 9:56–60 (1987).Google Scholar
  65. 65.
    D. K. F. Meijer and J. G. Weitering. Curare-like agents: Relation between lipid solubility and transport into bile in perfused rat liver.Eur. J. Pharmacol. 10:283–289 (1970).PubMedGoogle Scholar
  66. 66.
    D. K. F. Meijer, J. G. Weitering, and R. J. Vonk. Hepatic uptake and biliary excretion of d-tubocurarine and trimethylcurarine in the rat in vivo and in isolated perfused rat livers.J. Pharmacol. Exp. Ther. 198:229–239 (1976).PubMedGoogle Scholar
  67. 67.
    Y. J. Sohn, A. F. Bencini, A. H. J. Scaf, U. W. Kersten, and S. Agoston. Comparative Pharmacokinetics and dynamics of vecuronium and pancuronium in anesthetized patients.Anesth. Analg. 65:233–239 (1986).PubMedGoogle Scholar
  68. 68.
    R. A. Upton, T.-L. Nguyen, R. D. Miller, and J. Castagnoli. Renal and biliary elimination of vecuronium (Org NC 45) and pancuronium in rats.Anesth. Analg. 61:313–316 (1982).PubMedGoogle Scholar
  69. 69.
    P. Westra, G. T. P. Keulemans, M. C. Houwertjes, M. J. Hardonk, and D. K. F. Meijer. Mechanism underlying the prolonged duration of action of muscle relaxants caused by extrahepatic cholestasis.Br. J. Anaesth. 58:217–227 (1981).Google Scholar
  70. 70.
    H. Shindo, I. Takahashi, and E. Nakajima. Autoradiographic studies on the distribution of quaternary ammonium compounds. II. Distribution of14C-labeled decamethonium, hexamethonium and dimethonium in mice.Chem. Pharm. Bull. 19:1876–1885 (1971).PubMedGoogle Scholar
  71. 71.
    I. Braakman, T. Pijning, O. Verest, B. Weert, D. K. F. Meijer, and G. M. M. Groothuis. Vesicular uptake system for the cation lucigenin in the rat hepatocyte.Mol. Pharmacol. 36:537–542 (1989).PubMedGoogle Scholar
  72. 72.
    W. E. M. Mol and D. K. F. Meijer. Transport mechanisms for steroidal cationic drugs: Relation between hepatobiliary transport rate and subcellular distribution in liver.Hepatology 8:1386 (1988).Google Scholar
  73. 73.
    D. K. F. Meijer, J. W. Arends, and J. G. Weitering. The cardiac glycoside sensitive step in the hepatic transport of the bisquaternary ammonium compound, hexafluorenium.Eur. J. Pharmacol. 15:245–251 (1971).PubMedGoogle Scholar
  74. 74.
    I. Braakman, G. M. M. Groothuis, and D. K. F. Meijer. Acinar redistribution and heterogeneity in transport of the organic cation rhodamine B in rat liver.Hepatology 7,5:849–855 (1987).Google Scholar
  75. 75.
    I. Braakman, B. Weert, D. K. F. Meijer, and G. M. M. Groothuis. The hepatic uptake of rhodamine B.Biochem. Pharmacol. 1990 (in press).Google Scholar
  76. 76.
    U. J. Lavy, W. Hespe, and D. K. F. Meijer. Uptake and excretion of the quaternary ammonium compound deptropine methiodide in the isolated perfused rat liver.Naunyn-Schmiedebergs Arch. Exp. Pharmakol. 275:183–192 (1972).Google Scholar
  77. 77.
    A. Blom, A. H. J. Scaf, and D. K. F. Meijer. Hepatic drug transport in the rat. A comparison between isolated hepatocytes, the isolated perfused liver and the liver in vivo.Biochem. Pharmacol. 30:1809–1816 (1982).Google Scholar
  78. 78.
    J. G. Weitering, G. J. Mulder, D. K. F. Meijer, W. Lammers, M. Veenhuis, and S. E. Wendelaar Bonga. On the localization of d-tubocurarine in rat liver lysosomes in vivo by electron microscopy and subcellular fractionation.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 289:251–256 (1975).Google Scholar
  79. 79.
    J. G. Weitering, W. Lammers, D. K. F. Meijer, and G. J. Mulder. Localization of d-tubocurarine in rat liver lysosomes. Lysosomal uptake, biliary excretion and displacement by quinacrinein vivo.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 299:277–281 (1977).Google Scholar
  80. 80.
    M. Schwenk. Transport systems of isolated hepatocytes.Arch. Toxicol. 44:113–126 (1980).PubMedGoogle Scholar
  81. 81.
    W. E. M. Mol and D. K. F. Meijer. Hepatic transport mechanisms for bivalent organic cations. Subcellular distribution and hepato-biliary concentration gradients of some steroidal muscle relaxants.Biochem. Pharmacol. 39:383–390 (1990).PubMedGoogle Scholar
  82. 82.
    D. J. Silberstein, C. J. Bowman, M. S. Yates, and H. G. Dean. Effect of renal failure on the disposition and elimination of [3H]N-acetyl procainamide ethobromide in the rat.J. Pharm. Pharmacol. 38:679–685 (1986).PubMedGoogle Scholar
  83. 83.
    R. J. Vonk, P. A. Jekel, D. K. F. Meijer, and M. J. Hardonk. Transport of drugs in isolated hepatocytes, the influence of bile salts.Biochem. Pharmacol. 27:397–405 (1978).PubMedGoogle Scholar
  84. 84.
    P. G. Ruifrok. Uptake of quaternary ammonium compounds into rat liver plasma membrane vesicles.Biochem. Pharmacol. 31:1431–1435 (1982).PubMedGoogle Scholar
  85. 85.
    J. S. Fedan, G. K. Hogeboom, and J. P. O'Donnel. Photoaffinity labels as pharmacological tools.Biochem. Pharmacol. 33:1167–1180 (1984).PubMedGoogle Scholar
  86. 86.
    M. Frimmer and K. Ziegler. Photoaffinity labeling of whole cells by flashed light: A simple apparatus for high-energy ultraviolet flashes.Biochim. Biophys. Acta 855:143–146 (1986).PubMedGoogle Scholar
  87. 87.
    W. E. M. Mol, M. Müller, G. Kurz, and D. K. F. Meijer. Characterization of the hepatic uptake system for organic cations with a photolabel of procainamidethobromide.J. Hepatology 3:S44 (1986).Google Scholar
  88. 88.
    H.-P. Buscher, G. Fricker, W. Gerok, W. Kramer, G. Kurz, M. Müller, and S. Schneider. Membrane transport of amphiphilic compounds by hepatocytes. In H. Greten, E. Windler, and U. Beisiegel (eds.),Receptor-Mediated Uptake in the Liver, Springer-Verlag, Berlin/Heidelberg, Germany, 1986, pp. 189–199.Google Scholar
  89. 89.
    H.-P. Buscher, G. Fricker, W. Gerok, G. Kurz, M. Müller, S. Schneider, U. Schramm, and A. Schreyer. Hepatic transport systems for bile salts: localization and specificity. In G. Paumgartner, A. Stiehl and W. Gerok (eds.),Bile Acids and the Liver, MTP Press, Lancaster, England, 1987, pp. 95–110.Google Scholar
  90. 90.
    E. Petzinger, K. Fischer, and H. Fasold. Role of the bile acid transport system in hepatocellular ouabain uptake. In E. Erdmann, K. Greeff, and J. C. Skou (eds.),Cardiac Glycosides 1785–1985, Steinkopff-Verlag, Darmstadt, B.R.D., 1986, pp. 297–304.Google Scholar
  91. 91.
    T. Wieland, M. Nassal, W. Kramer, G. Fricker, U. Bickel, and G. Kurz. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labeling.Proc. Natl Acad. Sci. USA81:5232–5236 (1984).PubMedCentralPubMedGoogle Scholar
  92. 92.
    P. D. Berk, B. J. Potter, and W. Stremmel. Role of plasma membrane ligand-binding proteins in the hepatocellular uptake of albumin-bound organic anions.Hepatology 7:165–176 (1987).PubMedGoogle Scholar
  93. 93.
    J. L. Boyer and D. Reno. Properties of (Na+K)-activated ATPase in rat liver plasma membranes enriched with bile canaliculi.Biochim. Biophys. Acta 401:59–72 (1975).PubMedGoogle Scholar
  94. 94.
    D. K. F. Meijer, R. J. Vonk, and J. G. Weitering. The influence of various bile salts and some cholephilic dyes on Na+, K+- and Mg2+-activated ATPase of rat liver in relation to cholestatic effects.Toxicol. Appl. Pharmacol. 43:597–612 (1978).PubMedGoogle Scholar
  95. 95.
    Y. Echigoya, Y. Matsumoto, Y. Nakagawa, T. Suga, and S. Niinobe. Metabolism of quaternary ammonium compounds-I. Binding of tropane alkaloids to rat liver lysosomes.Biochem. Pharmacol. 21:477–484 (1972).PubMedGoogle Scholar
  96. 96.
    R. W. Van Dyke, E. D. Faber, J. K. Matsumoto-Pon, and D. K. F. Meijer. Concentrative uptake of organic amines by acidified rat liver endocytic vesicles.Hepatology 8:1360 (1988).Google Scholar
  97. 97.
    P. Johansson, J. O. Josefsson, and L. Nässberger. Induction and inhibition of pinocytosis by aminoglycoside antibiotics.Br. J. Pharmacol. 83:615–623 (1984).PubMedCentralPubMedGoogle Scholar
  98. 98.
    G. J. Kaloyanides. Renal pharmacology of aminoglycoside antibiotics. In C. Bianchi, A. Bertelli and C. G. Duarte (eds.),Kidney, Small Proteins and Drugs, Contributions to Nephrology, Vol. 42, Karger, Basel, 1984, pp. 148–167.Google Scholar
  99. 99.
    P. Van der Sluijs, H. H. Spanjer, and D. K. F. Meijer. Hepatic disposition of cationic drugs bound to asialo-orosomucoid: lack of co-endocytosis and evidence for intrahepatic dissociation.J. Pharmacol. Exp. Ther. 240:668–673 (1987).PubMedGoogle Scholar
  100. 100.
    C. De Duve, B. C. Pressman, R. Gianetto, R. Wattiaux, and F. Appelmans. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue.Biochem. J. 60:604–617 (1955).PubMedCentralGoogle Scholar
  101. 101.
    C. H. Gallagher. The effects of neuromuscular blocking agents on mitochondria. IV. Effects of d-tubocurarine, pyrrolizidine alkaloids and magnesium on oxidative phosphorylation.Biochem. Pharmacol. 17:533–538 (1968).PubMedGoogle Scholar
  102. 102.
    L. E. Bakeeva, L. L. Grinus, A. A. Jasaitis, V. V. Kuliene, D. O. Levitsky, E. A. Liberman, I. I. Severina, and V. P. Skulachev. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria.Biochim. Biophys. Acta 216:13–21 (1970).PubMedGoogle Scholar
  103. 103.
    R. R. Ramsay, J. I. Salach, and T. P. Singer. Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+.Biochem. Biophys. Res. Commun. 134:743–748 (1986).PubMedGoogle Scholar
  104. 104.
    J. L. Boyer. Mechanisms of bile secretion and hepatic transport. In T. C. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schulz (eds.),Physiology of Membrane Disorders, 2nd ed., Plenum Press, New York, 1986, pp. 609–636.Google Scholar
  105. 105.
    M. S. Anwer and D. Hegner. Effect of NA+ on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system.Z. Physiol. Chem. 359:181–192 (1978).Google Scholar
  106. 106.
    Y. Laperche, C. Graillot, J. Arondel, and P. Berthelot. Uptake of rifampicin by isolated rat liver cells. Interaction with sulfobromophthalein uptake and evidence for separate carriers.Biochem. Pharmacol 28:2065–2069 (1979).PubMedGoogle Scholar
  107. 107.
    Y. Laperche, A. M. Preaux, and P. Berthelot. Two uptake systems are involved in the sulfobromophthalein uptake by rat liver cells: one is shared with bile salts.Biochem. Pharmacol. 30:1333–1336 (1981).PubMedGoogle Scholar
  108. 108.
    W. Stremmel, G. Strohmeyer, F. Borchard, S. Kochwa, and P. D. Berk. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes.Proc. Natl. Acad. Sci. USA82:4–8 (1985).PubMedCentralPubMedGoogle Scholar
  109. 109.
    M. L. Rao, G. S. Rao, M. Holler, H. Breuer, P. G. Schattenbeg, and W. D. Stein. Uptake of cortisol by isolated rat liver cells. A phenomenon indicative of carrier-mediation and simple diffusion.Z. Physiol. Chem. 357:578–584 (1976).Google Scholar
  110. 110.
    M. L. Rao, G. S. Rao, and H. Breuer, Uptake of estrone, estradiol-17β and testosterone by isolated rat liver cells.Biochem. Biophys. Res. Commun. 77:566–573 (1977).PubMedGoogle Scholar
  111. 111.
    M. S. Anwer and D. Hegner. Effect of organic anions on bile acid uptake by isolated rat hepatocytes.Z. Physiol. Chem. 359:1027–1030 (1978).Google Scholar
  112. 112.
    E. Petzinger, C. Joppen, and M. Frimmer. Common properties of hepatocellular uptake of cholate, iodipamide and antamanide, as distinct from the uptake of bromosulphthalein.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 322:174–179 (1983).Google Scholar
  113. 113.
    M. Schwenk and V. Lopez del Pino. Uptake of estrone sulfate by isolated rat liver cells.J. Steroid Biochem. 13:669–673 (1980).PubMedGoogle Scholar
  114. 114.
    A. Tsuji, T. Terasaki, T. Tamai, E. Nakashima, and K. Takanosu. A carrier-mediated transport system for benzylpenicillin in isolated rat hepatocytes.J. Pharm. Pharmacol. 37:55–57 (1985).PubMedGoogle Scholar
  115. 115.
    D. L. Eaton and C. D. Klaassen. Carrier-mediated transport of ouabain in isolated hepatocytes.J. Pharmacol. Exp. Ther. 205:480–488 (1978).PubMedGoogle Scholar
  116. 116.
    H. J. Kupferberg. Inhibition of ouabain-3H uptake by liver slices and its excretion into the bile by compounds having a steroid nucleus.Life Sci. 8:1179–1185 (1969).PubMedGoogle Scholar
  117. 117.
    K. D. Kröncke, G. Fricker, P. J. Meier, W. Gerok, Th. Wieland, and G. Kurz.α-Amanitin uptake into hepatocytes. Identification of hepatic membrane transport systems used by amatoxins.J. Biol. Chem. 261:12526–12567 (1986).Google Scholar
  118. 118.
    N. H. Stacey and B. Kotecka. Inhibition of taurocholate and ouabain transport in isolated rat hepatocytes by cyclosporin A.Gastroenterology 95:780–786 (1988).PubMedGoogle Scholar
  119. 119.
    A. A. Somogyi, C. A. Schanks, and E. J. Triggs. Disposition kinetics of pancuronium bromide in patients with total biliary obstruction.Br. J. Anaesth. 49:1103–1108 (1977).PubMedGoogle Scholar
  120. 120.
    L. R. Schwarz, M. Schwenk, E. Pfaff, and H. Greim. Cholestatic steroid hormones inhibit taurocholate uptake into isolated rat hepatocytes.Biochem. Pharmacol. 26:2433–2437 (1977).PubMedGoogle Scholar
  121. 121.
    L. R. Schwarz, R. Burr, M. Schwenk, E. Pfaff, and H. Greim. Uptake of taurocholic acid into isolated rat-liver cells.Eur. J. Biochem. 55:617–623 (1975).PubMedGoogle Scholar
  122. 122.
    K. Ziegler, M. Primmer, H. Kessler, I. Damm, V. Eiermann, S. Koll, and J. Zarbock. Modified somatostatins as inhibitors of a multispecific transport system for bile acids and phallotoxins in isolated hepatocytes.Biochim. Biophys. Acta 845:86–93 (1985).PubMedGoogle Scholar
  123. 123.
    M. S. Anwer and D. Hegner. Interaction of fusidates with bile acid uptake by isolated rat hepatocytes.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 302:329–332 (1978).Google Scholar
  124. 124.
    M. C. Duffy, B. L. Blitzer, and J. L. Boyer. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.J. Clin. Invest. 72:1470–1481 (1983).PubMedCentralPubMedGoogle Scholar
  125. 125.
    E. Petzinger and K. Fischer. Transport functions of the liver. Lack of correlation between ouabain uptake and binding to (Na + K)-ATPase.Biochim. Biophys. Acta 815:334–340 (1985).PubMedGoogle Scholar
  126. 126.
    M. Frimmer, E. Petzinger, and K. Ziegler. Protective effect of anionic cholecystographic agents against phalloidin on isolated hepatocytes by competitive inhibition of the phallotoxin uptake.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 13:85–89 (1980).Google Scholar
  127. 127.
    C. Joppen, E. Petzinger, and M. Frimmer. Properties of iodipamide uptake by isolated hepatocytes.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 331:393–397 (1985).Google Scholar
  128. 128.
    E. Petzinger. Competitive inhibition of the uptake of demethylphalloin by cholic acid in isolated hepatocytes. Evidence for a transport competition rather than a binding competition.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 316:345–349 (1981).Google Scholar
  129. 129.
    M. Frimmer. Organotropism by carrier-mediated transport.Trends Pharmacol. Sci. 2:395–397 (1982).Google Scholar
  130. 130.
    A. Blom, K. Keulemans, and D. K. F. Meijer. Transport of dibromosulphthalein by isolated rat hepatocytes.Biochem. Pharmacol. 30:1809–1816 (1981).PubMedGoogle Scholar
  131. 131.
    M. Schwenk, T. Wiedmann, and H. Remmer. Uptake, accumulation and release of ouabain by isolated rat hepatocytes.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 316:340–344 (1981).Google Scholar
  132. 132.
    D. Levy, E. Glover, and S. Cheng. The interaction of hepatocyte plasma membranes with an azide derivative of procaine.Biochim. Biophys. Acta 469:194–201 (1977).PubMedGoogle Scholar
  133. 133.
    P. Von Dippe and D. Levy. Characterization of the bile acid transport system in normal and transformed hepatocytes. Photoaffinity labeling of the taurocholate carrier protein.J. Biol. Chem. 258:8896–8901 (1983).Google Scholar
  134. 134.
    R. Kroker, M. S. Anwer, and D. Hegner. The lack of active bile acid transport in AS 30 D hepatoma cells.Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 303:299–301 (1978).Google Scholar
  135. 135.
    H. Abberger, H.-P. Buscher, K. Fuchte, W. Gerok, U. Giese, W. Kramer, G. Kurz, and U. Zanger. Compartmentation of bile salt biosynthesis and transport revealed by photoaffinity labelling of isolated hepatocytes. In G. Stiehl and W. Gerok (eds.),Bile Acids and Cholesterol in Health and Disease, MTP Press, Lancaster, England, 1983, pp. 233–246.Google Scholar
  136. 136.
    M. Ananthanaryanan, P. Von Dippe, and D. Levy. Identification of the hepatocyte Na+-dependent bile acid transport protein using monoclonal antibodies.J. Biol. Chem. 263:8338–8343 (1988).Google Scholar
  137. 137.
    G. L. Sottocasa, C. Tiribelli, M. Luciani, G. C. Lunazzi, and B. Gazzin. Isolation and some properties of a protein molecule involved in hepatic bilirubin and other anion transport. In E. Quagliariello, F. Palmieri, S. Papa, and M. Klingenberg (eds.),Functional and Molecular Aspects of Biomembrane Transport, Elsevier North-Holland, Amsterdam, The Netherlands, 1979, pp. 451–458.Google Scholar
  138. 138.
    W. Stremmel and P. D. Berk. Hepatocellular uptake of sulfobromophthalein and bilirubin is selectively inhibited by an antibody to the liver plasma membrane sulfobromophthalein/bilirubin binding protein.J. Clin. Invest. 78:822–826 (1986).PubMedCentralPubMedGoogle Scholar
  139. 139.
    A. W. Wolkoff, A. Sosiak, H. C. Greenblatt, J. van Renswoude, and R. J. Stockert. Immunological studies of an organic anion-binding protein isolated from rat liver cell plasma membrane.J. Clin. Invest. 76:454–459 (1985).PubMedCentralPubMedGoogle Scholar
  140. 140.
    G. L. Sottocasa, G. Baldini, G. Sandri, G. Junazzi, and C. Tiribelli. Reconstitution in vitro of sulfobromophthalein transport by bilitranslocase.Biochim. Biophys. Acta 685:123–128 (1982).PubMedGoogle Scholar
  141. 141.
    P. Von Dippe, M. Ananthanarayanan, P. Drain, and D. Levy. Purification and reconstitution of the bile acid transport system from hepatocyte sinusoidal plasma membranes.Biochim. Biophys. Acta 862:352–360 (1986).Google Scholar
  142. 142.
    G. Fricker, S. Schneider, W. Gerok, and G. Kurz. Identification of different transport systems for bile salts in sinusoidal and canalicular membranes of hepatocytes.Z. Biol. Chem. 368:1143–1150 (1987).Google Scholar
  143. 143.
    S. Ruetz, G. Fricker, G. Hugentobler, K. Winterhalter, G. Kurz, and P. J. Meier. Isolation and characterization of the putative canalicular bile salt transport system of rat liver.J. Biol. Chem. 262:11324–11330 (1987).PubMedGoogle Scholar
  144. 144.
    S. Ruetz, G. Hugentobler, and P. J. Meier. Functional reconstitution of the canalicular bile salt transport system of rat liver.Proc. Natl Acad Sci. USA85:6147–6151 (1988).PubMedCentralPubMedGoogle Scholar
  145. 145.
    Y. Kamimoto, Z. Gatmaitan, J. Hsu, and J. M. Arias. The function of Gp170, the multidrug resistance gene product in rat liver canalicular membrane vesicles.J. Biol. Chem. 264:11693–11698 (1989).PubMedGoogle Scholar
  146. 146.
    W. E. M. Mol, M. Müller, G. Kurz, and D. K. F. Meijer. Multiplicity in hepatic uptake mechanisms for organic cations.Hepatology 8:1401 (1988).Google Scholar
  147. 147.
    W. Kramer, U. Bickel, H.-P. Buscher, W. Gerok, and G. Kurz. Bile-salt binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labeling.Eur. J. Biochem. 129:13–24 (1982).PubMedGoogle Scholar
  148. 148.
    M. Inoue, R. Kinne, T. Tran, and I. M. Arias. Taurocholate transport by rat liver sinusoidal membrane vesicles: Evidence of sodium cotransport.Hepatology 2:572–579 (1982).PubMedGoogle Scholar
  149. 149.
    P. G. Ruifrok and D. F. K. Meijer. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.Liver 2:28–34 (1982).PubMedGoogle Scholar
  150. 150.
    F. A. Simion, B. Fleischer, and S. Fleischer. Ionic requirements for taurocholate transport in rat liver plasma membrane vesicles.J. Bioenerg. Biomembranes 16:507–515 (1984).Google Scholar
  151. 151.
    J. G. Fitz and B. F. Scharschmidt. Regulation of transmembrane electric potential gradient in rat hepatocytes in situ.Am. J. Physiol. 252:G56-G64 (1987).PubMedGoogle Scholar
  152. 152.
    P. J. Meier, A. S. Meiser-Abt, C. Barrett, and J. L. Boyer. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier.J. Biol. Chem. 259:10614–10622 (1984).PubMedGoogle Scholar
  153. 153.
    R. W. Van Dyke, J. E. Stephens, and B. Scharschmidt. Bile acid transport in cultured rat hepatocytes.Am. J. Physiol. 243:G484-G492 (1982).PubMedGoogle Scholar
  154. 154.
    L. Dember. Conjugation is a requirement for Na+-coupled bile acid transport by rat basolateral liver plasma membrane (LPM) vesicles.Gastroenterology 86:1350 (1984).Google Scholar
  155. 155.
    E. Petzinger and M. Frimmer. Driving forces in hepatocellular uptake of phalloidin and cholate.Biochim. Biophys. Acta 778:539–548 (1984).PubMedGoogle Scholar
  156. 156.
    B. L. Blitzer, C. Terzakis, and K. Scott. Hydroxyl/bile acid exchange. A new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles.J. Biol. Chem. 261:12042–12046. (1986).PubMedGoogle Scholar
  157. 157.
    R. H. Moseley, P. J. Meier, P. S. Aronson, and J. L. Boyer, Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.Am. J. Physiol. 250:G35-G43 (1986).PubMedGoogle Scholar
  158. 158.
    B. J. Potter, B. F. Blades, M. D. Shepard, S. M. Thung, and P. D. Berk. The kinetics of sulfobromophthalein uptake by rat liver sinusoidal vesicles.Biochim. Biophys. Acta 989:159–171 (1987).Google Scholar
  159. 159.
    M. Täfler, K. Ziegler, and M. Frimmer. Iodipamide uptake by rat liver plasma membrane vesicles enriched in the sinusoidal fraction: evidence for a carrier-mediated transport dependent on membrane potential.Biochim. Biophys. Acta 855:157–168 (1986).PubMedGoogle Scholar
  160. 160.
    A. W. Wolkoff, A. C. Samuelson, K. L. Johansen, R. Nakata, D. M. Withers, and A. Sosiak. Influence of Cl on organic anion transport in short term cultured rat hepatocytes and isolated perfused liver.J. Clin. Invest. 79:1259–1268 (1987).PubMedCentralPubMedGoogle Scholar
  161. 161.
    K. Inui, M. Takano, T. Okano, and R. Hori. Role of chloride on carrier-mediated transport of p-aminohippurate in rat renal basolateral membrane vesicles.Biochim. Biophys. Acta 855:425–428 (1986).PubMedGoogle Scholar
  162. 162.
    G. Hugentobler and P. J. Meier. Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles.Am. J. Physiol. 251:G656-G664 (1984).Google Scholar
  163. 163.
    P. J. Meier, R. Knickelbein, R. H. Mosely, J. W. Dobbins, and J. L. Boyer. Evidence for carrier-mediated Cl:HCO3-exchange in canalicular rat liver plasma membrane vesicles.J. Clin. Invest. 75:1256–1263 (1985).PubMedCentralPubMedGoogle Scholar
  164. 164.
    K. Iwamoto, D. L. Eaton, and C. D. Klaassen. Uptake of morphine and nalorphine by isolated rat hepatocytes.J. Pharmacol. Exp. Ther. 206:181–189 (1978).PubMedGoogle Scholar
  165. 165.
    J. Graf and O. H. Petersen. Cell membrane potential and resistance in liver.J. Physiol. London 284:105–126 (1978).PubMedCentralPubMedGoogle Scholar
  166. 166.
    P.-H. Hsyu and K. T. Giacomini. The pH gradient transport of organic cations in the renal brush border membrane. Studies with acridine orange.J. Biol. Chem. 262:3964–3968 (1987).PubMedGoogle Scholar
  167. 167.
    C. Neef, K. T. P. Keulemans, and D. K. F. Meijer. Hepatic uptake and biliary excretion of organic cations. II: The influence of ion-pair formation.Biochem. Pharmacol. 33:3991–4002 (1984).PubMedGoogle Scholar
  168. 168.
    S. Cheng and D. Levy. Characterization of the anion transport system in hepatocyte plasma membranes.J. Biol. Chem. 255:2637–2640 (1980).PubMedGoogle Scholar
  169. 169.
    G. Lunazzi, C. Tiribelli, B. Gazzin, and G. L. Sottocasa. Further studies on bilitranslocase, a plasma membrane protein involved in hepatic organic anion uptake.Biochim. Biophys. Acta 685:117–122 (1982).PubMedGoogle Scholar
  170. 170.
    J. Reichen and P. D. Berk. Isolation of an organic anion binding protein from rat liver plasma membrane fractions by affinity chromatography.Biochem. Biophys. Res. Commun. 91:484–489 (1979).PubMedGoogle Scholar
  171. 171.
    W. Stremmel, M. Gerber, V. Glezerov, S. N. Thung, S. Kochwa, and P. D. Berk. Physicochemical and immunohistological studies of a sulfobromophthalein- and bilirubin-binding protein from rat liver plasma membranes.J. Clin. Invest. 71:1796–1805 (1983).PubMedCentralPubMedGoogle Scholar
  172. 172.
    A. W. Wolkoff and C. T. Chung. Identification, purification, and partial characterization of an organic anion binding protein from rat liver cell membranes.J. Clin. Invest. 65:1152–1161 (1980).PubMedCentralPubMedGoogle Scholar
  173. 173.
    K. Ziegler, M. Frimmer, S. Mullner, and H. Fasold, 3′-isothiocyanatobenzamido[3H]-cholate, a new affinity label for hepatocellular membrane proteins responsible for the uptake of both bile acids and phalloidin.Biochim. Biophys. Acta 773:11–22 (1984).PubMedGoogle Scholar
  174. 174.
    K. Ziegler, M. Frimmer, and H. Fasold. Further characterization of membrane proteins involved in the transport of organic anions in hepatocytes. Comparison of two different affinity labels: 4,4′-diisothiocyano-1,2-diphenylethane-2-,2-disulfonic acid and brominated taurodehydrocholic acid.Biochim. Biophys. Acta 769:117–122 (1984).PubMedGoogle Scholar
  175. 175.
    K. Ziegler and M. Frimmer. Identification of cyclosporin binding sites in rat liver plasma membranes, isolated hepatocytes, and hepatoma cells by photoaffinity labeling using [3H]cyclosporin-diaziridine.Biochim. Biophys. Acta 855:147–156 (1986).PubMedGoogle Scholar
  176. 176.
    K. Schenck-Gustafsson. Quinidine-induced reduction of the biliary excretion of digoxin in patients. In E. Erdmann, K. Greef, and J. C. Skou (eds.),Cardiac Glycosides 1785–1985. Biochemistry-Pharmacology-Clinical Relevance, Steinkopf-Verlag, Darmstadt, FRG., 1986, pp. 293–296.Google Scholar
  177. 177.
    B. Fichtl and W. Doering. The quinidine-digoxin interactions in perspective.Clin. Pharmacokin. 8:137–154 (1983).Google Scholar
  178. 178.
    M. Muto. A scanning electron microscopic study on endothelial cells and Kupffer cells in rat liver sinusoids.Arch. Histol. Jap. 37:369–386 (1975).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Dirk K. F. Meijer
    • 1
  • Wim E. M. Mol
    • 1
  • Michael Müller
    • 2
  • Gerhart Kurz
    • 2
  1. 1.Department of Pharmacology and TherapeuticsUniversity Center for PharmacyAW, GroningenThe Netherlands
  2. 2.Institut für Organische Chemie und BiochemieUniversität FreiburgWest Germany

Personalised recommendations