Studia Logica

, Volume 54, Issue 2, pp 139–147 | Cite as

Freely generated filters in free Boolean algebras

  • Joanna Grygiel


In this paper we will prove that ifF is a filter of a free Boolean algebra such that the minimal cardinality of the set of generators ofF is an uncountable regular cardinal or a singular cardinal with uncountable cofinality thenF is freely generated.


Mathematical Logic Boolean Algebra Computational Linguistic Minimal Cardinality Regular Cardinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balcar, B., Franek F., 1982, ‘Independent families in complete Boolean algebras’, TAMS, 274, 607–618.Google Scholar
  2. Gratzer, G., 1967,Universal algebra, Princeton.Google Scholar
  3. Grygiel, J., 1988, ‘Absolute independence in atomless algebras, Universal and Applied Algebra’, inProceedings of the V Universal Algebra Symposium edited by K. Hałowska, B. Stawski, World Scientific.Google Scholar
  4. Grygiel, J., 1990, ‘Absolutely independent sets of generators of filters in Booolean algebras’,Reports on Mathematical Logic 24, 25–35.Google Scholar
  5. Koppelberg, S., 1989, ‘Free Constructions’, inHandbook of Boolean algebras, edited by Monk J.D, Bonnet R., North Holland.Google Scholar
  6. Monk, J. D., 1983, ‘Independence in Boolean algebras’,Periodica Mathematica Hungarica—/14, 269–308.Google Scholar
  7. Reznikoff, I., ‘Free axiomatizations in classical logic’, preprint.Google Scholar
  8. Reznikoff I., 1965, ‘Tout ensemble de formules de la logique classique est équivalent á un ensemble indépendant’,Compets Rendus Hebdomadiares Acad. Sci. Paris 260, 2385–2388.Google Scholar
  9. Reznikoff I., 1993, private correspondence.Google Scholar
  10. Shelah S., 1980, ‘Remarks on Boolean algebras’,Alg. Univ. 11, 77–89.Google Scholar
  11. Sikorski R., 1960,Boolean algebras, Berlin, Gottingen, Heidelberg.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Joanna Grygiel
    • 1
  1. 1.Institute of MathematicsPedagogical CollegeCzestochowaPoland

Personalised recommendations