Advertisement

A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents

  • William J. Jusko
Article

Abstract

A pharmacodynamic model is proposed and equations are developed for the quantitative analysis of dose-time-cell-survival curves produced by the administration of cell-cycle-specific chemo-therapeutic agents. The essential feature of the model is an irreversible, bimolecular mechanism of drug-receptor interaction which serves as the interface between the pharmacokinetics of the drug and the cell-cycle-cell-proliferation kinetics of the normal and neoplastic cells. A preliminary cell system which allows adequate characterization of the experimental data is a two-compartment model where cells are assumed to exist in their proliferative and nonproliferative phases. The chemotherapeutic model was used to analyze dose-time-cell-survival curves found in the literature for the effects of vincristine, vinblastine, arabinosylcytosine, and cyclophosphamide on lymphoma and hematopoietic cells in the mouse femur. Similarity in the values of the “cell-kill” constants for these drugs on the two cell types indicates that, in the cell systems studied, the proliferative state of the cells is the primary in vivodeterminant of selective chemotherapy.

Key words

pharmacokinetics cancer chemotherapy pharmacodynamics cell kinetics vincristine vinblastine arabinosylcytosine cyclophosphamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Skipper. The cell cycle and chemotherapy of cancer. In R. Baserga (ed.),The Cell Cycle and Cancer, Marcel Dekker, New York, pp. 358–387 (1971).Google Scholar
  2. 2.
    W. J. Jusko. Pharmacodynamics of chemotherapeutic effects: Dose-time-response relationships for phase-nonspecific agents.J. Pharm. Sci.,60, 892–895 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    W. J. Jusko. Pharmacokinetic principles in pediatric pharmacology.Pediat. Clin. N. Am.,19, 81–100 (1972).PubMedGoogle Scholar
  4. 4.
    L. Simpson-Herren, and H. H. Lloyd. Kinetic parameters and growth curves for experimental tumor systems.Cancer Chemotherap. Rep. Part 1,54, 143–174 (1970).Google Scholar
  5. 5.
    R. L. Dedrick, D. D. Forrester, and D. H. W. Ho.In vitro-In vivo correlation of drug metabolism-Deamination of 1-β-d-arabinofuranosylcytosine.Biochem. Pharmacol.,21, 1–16 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    IBM Scientific Subroutine RKGS, 360A-CM-03X, Version III. IBM Technical Publications Department, White Plains, N.Y. (1968).Google Scholar
  7. 7.
    W. R. Bruce, and B. E. Meeker. Dissemination and growth of transplanted isologous murine lymphoma cells.J. Natl. Cancer Inst.,32, 1145–1159 (1964).PubMedGoogle Scholar
  8. 8.
    F. A. Valeriote, and W. R. Bruce. Comparison of the sensitivity of hematopoietic colony-forming cells in different proliferative states to vinblastine.J. Natl. Cancer Inst.,38, 393–399 (1967).PubMedGoogle Scholar
  9. 9.
    W. R. Bruce, B. E. Meeker, W. E. Powers, and F. A. Valeriote. Comparison of the dose-and time-survival curves for normal hematopoietic and lymphoma colony-forming cells exposed to vinblastine, vincristine, arabinosylcytosine, and amethopterin.J. Natl. Cancer Inst.,42, 1015–1023 (1969).PubMedGoogle Scholar
  10. 10.
    W. R. Bruce, and F. A. Valeriote. Normal and malignant stem cells and chemotherapy.Ann. Symp. Fund. Cancer Res., pp. 409–122 (1967).Google Scholar
  11. 11.
    C. M. Metzler. NONLIN. Technical Report No. 7292/69/7293/005, Upjohn, Kalamazoo, Mich. (1969).Google Scholar
  12. 12.
    F. A. Valeriote, and W. R. Bruce. Anin vitro assay for growth-inhibiting activity of vinblastine.J. Natl. Cancer Inst.,35, 851–856 (1965).PubMedGoogle Scholar
  13. 13.
    K. B. Bischoff, K. J. Himmelstein, R. L. Dedrick, and D. S. Zaharko. Pharmacokinetics and cell population growth models in cancer chemotherapy.ACS Advan. Chem., in press (1972).Google Scholar
  14. 14.
    K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci.,60, 1128–1133 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    C. F. Evert, and M. J. Randall. Formulation and computation of compartment models.J. Pharm. Sci.,59, 403–409 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    G. M. Hahn. A formalism describing the kinetics of some mammalian cell populations.Math. Biosci.,6, 295–304 (1970).CrossRefGoogle Scholar
  17. 17.
    S. I. Rubinow, J. L. Lebowitz, and A.-M. Sapse. Parameterization ofin vivo leukemic cell populations.Biophys. J.,11, 175–188 (1971).PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    W. C. Werkheiser. Mathematical simulation in chemotherapy.Ann. N.Y. Acad. Sci.,186, 343–358 (1971).PubMedCrossRefGoogle Scholar
  19. 19.
    W. C. Werkheiser, G. B. Grindley, R. G. Moran, and C. A. Nichol. Mathematical simulation of the interaction of drugs which inhibit DNA biosynthesis.Mol. Pharmacol.,9, 320–329 (1973).PubMedGoogle Scholar
  20. 20.
    K. J. Himmelstein and K. B. Bischoff. Mathematical representations of cancer chemotherapy effects.J. Pharmacokin. Biopharm.,1, 51–68 (1973).CrossRefGoogle Scholar
  21. 21.
    K. J. Himmelstein and K. B. Bischoff. Models of ARA-C chemotherapy of L1210 leukemia in mice,J. Pharmacokin. Biopharm.,1, 69–81 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • William J. Jusko
    • 1
  1. 1.Section of Clinical PharmacologyVeterans Administration HospitalBoston

Personalised recommendations