Multicompartment models of cancer chemotherapy incorporating resistant cell populations

  • Hiep Nguyen Duc
  • Peter M. Nickolls


The pharmacokinetics of antineoplastic drugs based on compartmental models are combined with deterministic exponential growth models of tumors containing drug-resistant and sensitive cells. Model predictions for single-drug therapy are compared with in vivodata obtained by other investigators for L1210 t-cell leukemia in mice treated with BCNU and AraC and for in vitrotreatment of L1210 with Ara-C. The model and data compare favorably in terms of rate of tumor growth and duration of drug action for both constant infusion and bolus delivery of the drugs.

Key words

Chemotherapy mutation resistance compartmental analysis pharmacokinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Goldie and A. J. Coldman. The genetic origin of drug resistance in neoplasm: Implications for systemic therapy.Cancer Res. 44:3643–3653 (1984).PubMedGoogle Scholar
  2. 2.
    J. H. Goldie and A. J. Coldman. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate.Cancer Treat. Rep. 63:1727–1733 (1979).PubMedGoogle Scholar
  3. 3.
    A. J. Coldman and J. H. Goldie. A model for the resistance of tumor cells to cancer chemotherapeutic agents.Math. Biosci. 65:291–307 (1963).CrossRefGoogle Scholar
  4. 4.
    K. Bischoff, R. Dedrick, D. Zaharko, and J. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Dedrick, D. Zaharko, R. Bender, W. Bleyer, and R. Lutz. Pharmacokinetic considerations on resistance to anticancer drugs.Cancer Chemother. Rep. 59:795–804 (1975).PubMedGoogle Scholar
  6. 6.
    K. Woo, L. Brenkus, and K. Wiig. Analysis of the effects of antitumor drugs on cell cycle kinetics.Cancer Chemother. Rep. 59:847–860 (1975).PubMedGoogle Scholar
  7. 7.
    C. Finn and W. Sadee. Determiniation of 5-fluoroucil (NSC-19893) plasma levels in rats and man by isotope dilution-mass fragmentography.Cancer Chemother. Rep. 59:279–286 (1975).Google Scholar
  8. 8.
    A. Coldman and J. Goldie. A mathematical model of drug resistance in neoplasm In N. Bruchovsky and J. Goldie (eds.),Drug and Hormone Resistance in Neoplasm, Vol. 1, CRC Press, Boca Raton, Florida, 1982.Google Scholar
  9. 9.
    H. Skipper, F. Schabel, and J. Mellet,et al. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules.Cancer Chemother. Rep. 54:431–450 (1970).PubMedGoogle Scholar
  10. 10.
    G. Levy. Relationship between pharmacological effects and plasma or tissue concentration of drugs in man. In. D. Davies and B. Prichard (eds.),Biological Effects of Drugs in Relation to Their Plasma Concentrations, MacMillan, London, 1973.Google Scholar
  11. 11.
    K. Himmelstein and K. Bischoff. Models of ARA-C chemotherapy of L1210 leukemia in mice.J. Pharmacokin. Bipharm. 1:69–81 (1973).CrossRefGoogle Scholar
  12. 12.
    K. Himmelstein and K. Bischoff. Mathematical representations of cancer chemotherapy effects.J. Pharmacokin. Biopharm. 1:51–68 (1973).CrossRefGoogle Scholar
  13. 13.
    W. Jusko. A pharmacodynamic model for cell-cycle specific chemotherapeutic agents.J. Pharmacokin. Biopharm. 1:175–201 (1973).CrossRefGoogle Scholar
  14. 14.
    L. Norton and R. Simon. Tumor size, sensitivity to therapy, and design of treatment schedule.Cancer Treat. Rep. 61:1307–1317 (1977).PubMedGoogle Scholar
  15. 15.
    H. Skipper. Pharmacological basis of cancer chemotherapy: Closing remarks. InPharmacological Basis of Cancer Chemotherapy, Symposium on Fundamental Cancer Research, University of Texas, 1974, pp. 713–726.Google Scholar
  16. 16.
    B. Hill. Cancer chemotheraphy. The relevance of certain concepts of cell cycle kinetics.Biochim. Biophys. Acta. 516:389–417 (1978).PubMedGoogle Scholar
  17. 17.
    R. Tallarida and L. Jacob.The Dose-Response Relation in Pharmacology, Springer-Verlag, New York, 1979.CrossRefGoogle Scholar
  18. 18.
    J. Jacquez.Compartmental Analysis in Biology and Medicine, Elsevier, Amsterdam, 1972.Google Scholar
  19. 19.
    R. Brown. Compartmental system analysis: State of the art.IEEE Trans. Biomed. Eng. BNE-27 (1):1–11 (1980).CrossRefGoogle Scholar
  20. 20.
    A. Rescigno and G. Segre.Drug and Tracer Kinetics, Blaisdell, Massachusetts, 1966.Google Scholar
  21. 21.
    G. Swan and T. Vincent. Optimal control analysis in the chemotherapy of Ig multiple myeloma.Bull. Math. Biol. 39:317–337 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Brunton and T. Wheldon. The Gompertz equation and the construction of tumor growth curves.Cell Tissue Kinet. 13:455–460 (1980).PubMedGoogle Scholar
  23. 23.
    M. Gibaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1975.Google Scholar
  24. 24.
    F. Schabel, M. Skipper, M. Trader, W. Laster, T. Corbett, and D. Griswold. Concepts for controlling drug resistant tumor cells. In M. Mourisden and T. Palshof (eds.),Breast Cancer—Experimental and Clinical Aspects, Pergamon Press, Oxford, 1980, pp. 199–221.Google Scholar
  25. 25.
    H. Skipper. Booklets 11, 12, 16, 17, Southern Research Institute, Birmingham, Alabama, 1980.Google Scholar
  26. 26.
    S. Shackney. A computer model for tumor growth and chemotherapy, and its application to L1210 leukemia treated with cytosine arabinoside (NSC-63878).Cancer Chemother. Rep. 54:399–429 (1970).PubMedGoogle Scholar
  27. 27.
    T. Vietti, F. Valeriote, R. Kalish, and D. Coulter. Kinetics of cytotoxicity of VM-26 and VP-16-213 on L1210 leukemia and hematopoietic stem cells.Cancer Treat. Rep. 62:1313–1320 (1978).PubMedGoogle Scholar
  28. 28.
    M. Berenbaum. Criteria for analysing interactions between biologically active agents.Adv. Cancer Res. 35:269–235 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Chadwick and H. Leenhouts.The Molecular Theory of Radiation Biology. Springer-Verlag, Berlin, 1981.CrossRefGoogle Scholar
  30. 30.
    W. Bruce, B. Meeker, and F. Valeriote. Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administeredin vivo.J. Natl Cancer Inst. 37:233–245 (1966).PubMedGoogle Scholar
  31. 31.
    T. Borsa, G. Whitmore, and F. Valeriote. Studies on the persistence of methotrexate, cytosine arabinoside, and leucovorin in serum of mice.J. Natl. Cancer Inst. 42:235–242 (1969).PubMedGoogle Scholar
  32. 32.
    H. Skipper, F. Schabel, and W. Wilcox. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia.Cancer Chemother. Rep. 35:1–111 (1964).PubMedGoogle Scholar
  33. 33.
    J. Lankelma and E. Van der Kleijn. The plasma concentration of methotrexate. In F. Merkus (ed.),The Serum Concentration of Drugs, Excerpta Medica. Amsterdam, 1980, pp. 244–249.Google Scholar
  34. 34.
    P. Leme, P. Creaven, L. Allen, and M. Berman. Kinetic model for the disposition and metabolism of moderate and high dose methotrexate (NSC-740) in man.Cancer Chemother. Rep. 59:811–817 (1975).PubMedGoogle Scholar
  35. 35.
    S. Chuang. Mathematic models for cancer chemotherapy: Pharmacokinetic and cell kinetic considerations.Cancer Treat. Rep. 59:827–842 (1975).Google Scholar
  36. 36.
    S. Chuang and H. Lloyd. Analysis and identification of stochastic compartment models in pharmacokinetics: Implication for cancer chemotherapy.Math. Biosci. 22:57–74 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Hiep Nguyen Duc
    • 1
  • Peter M. Nickolls
    • 1
  1. 1.Department of Electrical EngineeringUniversity of SydneySydneyAustralia

Personalised recommendations