Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Caffeine and paraxanthine pharmacokinetics in the rabbit: Concentration and product inhibition effects

  • 59 Accesses

  • 10 Citations


The disposition of caffeine (C) and its major metabolite paraxanthine (P) have been determined following i.v. bolus dosing both separately and concomitantly to New Zealand White rabbits. Caffeine clearances of 1.52–6.71 ml/mm/kg were observed and were suggestive of polymorphism with rapid (type I) and slow (type II) metabolizing subpopulations represented. Type II metabolizers exhibited dose-independent pharmacokinetics for C, while the clearances of type I animals were dose-dependent (lower clearances at higher doses). The P clearances were not dose-dependent. In type I rabbits coadministration of P inhibited C metabolism by as much as 71%. Results were consistent with the hypothesis that at least two farms of cytochrome “P-450” mediate the metabolism of C in the rabbit.

This is a preview of subscription content, log in to check access.


  1. 1.

    M. J. Arnaud. Products of metabolism of caffeine. In P. B. Dews (ed.),Caffeine, Perspectives from Recent Research, Springer-Verlag, New York, 1984, pp.3–38.

  2. 2.

    D. D. Tang-Liu, R. L. Williams, and S. Riegelman. Disposition of caffeine and its metabolites in man.J. Pharmacol. Exp. Ther. 224:180–185 (1983).

  3. 3.

    M. Bonati, R. Latini, G. Tognoni, J. F. Young, and S. Garattini. Interspecies comparison ofin vivo caffeine pharmacokinetics in man, monkey, rabbit, rat and mouse.Drug Metab. Rev. 15:1355–1383 (1985).

  4. 4.

    M. Bonati, R. Latini, F. Galletti, J. F. Young, G. Tognoni, and S. Garattini. Caffeine disposition after oral doses.Clin. Pharmacol Ther. 32:98–106 (1982).

  5. 5.

    M. Bonati and S. Garattini. Interspecies comparison of caffeine disposition. In P. B. Dews (ed.),Caffeine, Perspectives from Recent Research, Springer-Verlag, New York, 1984, pp. 48–56.

  6. 6.

    B. R. Dorrbecker, S. H. Mercik, and P. A. Kramer. Improved micro-method for the high-performance liquid chromatographic determination of caffeine and paraxanthine in biological fluids.J. Chromatog. Biomed. Appl. 336:293–300 (1984).

  7. 7.

    D. Perrier, J. J. Ashley, and G. Levy. Effect of product inhibition on kinetics of drug elimination.J. Pharmacokin. Biopharm. 1:231–242 (1973).

  8. 8.

    C. A. Beach, B. M. Sterman, J. R. Bianchine, and N. Gerber. Disposition of caffeine in the rabbit.Fed. Proc. 42:377 (1983).

  9. 9.

    A. Burg. Physiological disposition of caffeine.Drug. Metab. Rev. 4:199–228 (1975).

  10. 10.

    A. Bortolotti, L. Jiritano, and M. Bonati. Pharmacokinetics of paraxanthine, one of the primary metabolites of caffeine, in the rat.Drug Metab. Dispos. 13:227–231 (1985).

  11. 11.

    G. L. Traina and M. Bonati. Pharmacokinetics of theobromine and its metabolites in rabbits.J. Pharmacokin. Biopharm. 13:41–53 (1985).

  12. 12.

    A. H. Neims and R. W. vonBorstel. In R. J. Wurtman and H. J. Wurtman (eds.),Caffeine: Metabolism and Biochemical Mechanisms of Action, Nutrition and the Brain, Vol. 6, Raven Press, New York, 1983, pp. 1–30.

  13. 13.

    R. Newton, L. J. Broughton, M. J. Lind, P. J. Morrison, H. J. Fogers, and I. D. Bradbrook, Plasma and salivary pharmacokinetics of caffeine in man.Eur. J. Clin. Pharmacol. 21:45–52 (1981).

  14. 14.

    D. W. Nebert and M. Negishi. Multiple forms of cytochrome P-450 and the importance of molecular biology and evolution.Biochem. Pharmacol. 31:2311–2317 (1982).

  15. 15.

    J.L. Ferraro, Ph.D. Thesis, University of Florida, 1985.

  16. 16.

    M. Bonati, A. Celardo, F. Galletti, R. Latini, F. Tursi, and G. Belvedere. Kinetics of caffeine metabolism in control and 3-methylcholanthrene induced rat liver microsomes.Toxicol. Lett. 21:53–58 (1984).

  17. 17.

    E. R. Johnson, H. H. Dieter, and U. Muller-Eberhard. Structural and functional diversity of rabbit microsomal cytochrome P-450: Intraspecies variations in progesterone metabolism and polymorphism of form 3b. In R. Sato and R. Kato (eds.),Microsomes, Drug Oxidations and Drug Toxicity, Japan Scientific Societies Press, Tokyo, 1983, pp. 35–43.

  18. 18.

    S. H. Dorrbecker, J. R. Raye, B. R. Dorrbecker, and P. A. Kramer. Caffeine disposition in the pregnant rabbit I: Pharmacokinetics following administration by intravenous bolus and continuous zero-order infusion.Dev. Pharmacol. Ther., in press.

  19. 19.

    S. M. Lohman and R. P. Meich. Theophylline metabolism by the rat microsomal system.J. Pharmacol. Exp. Ther. 196:213–225 (1976).

  20. 20.

    D. D. Drouillard, E. S. Vessell, and B. H. Dvorchik. Studies on theobromine disposition in normal subjects.Clin. Pharmacol. Ther. 23:296–302 (1978).

Download references

Author information

Correspondence to Paul A. Kramer.

Additional information

This work was supported in part by grant HD 16900 from the National Institutes of Health.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dorrbecker, S.H., Ferraina, R.A., Dorrbecker, B.R. et al. Caffeine and paraxanthine pharmacokinetics in the rabbit: Concentration and product inhibition effects. Journal of Pharmacokinetics and Biopharmaceutics 15, 117–132 (1987). https://doi.org/10.1007/BF01062339

Download citation

Key words

  • Caffeine
  • clearance
  • paraxanthine
  • product inhibition
  • nonlinear pharmacokinetics
  • rabbit