Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A numerical method of calculating secondary current distributions in electrochemical cells

  • 50 Accesses

  • 7 Citations

Abstract

A numerical method is proposed based on the analogy between the potential distribution in an electrolytic solution and the temperature distribution in a heat-conducting medium. Thus the equation of non-steady-state heat conduction which contains a hypothetical temperaturev(x, y, t) is solved numerically with appropriate boundary conditions. In the steady state the distribution ofv(x, y, t) corresponds to the distribution of potentialφ s (x,y) which satisfies Laplace's equation. The method is useful not only for conventional electrochemical cells but also for complicated systems such as a bipolar electrode for which boundary conditions provide neither the potential nor the current density at the electrode surface.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

a :

length of unit cell (see Fig. 1)

b, c, d :

geometric parameters of rectangular cell (see Fig. 2a)

C m :

heat capacity of metal

E :

average electric field in solution or average temperature gradient in medium

I :

total current in unit cell

I F :

faradaic current in unit cell

I S :

by-pass current in solution in unit cell

i e :

cathodic limiting current density

j :

current density

n :

normal distance from the electrode surface

r, θ:

polar coordinates

r 0 :

radius of cylindrical electrode

S :

surface area of electrode

t :

time

V :

cell voltage

V 0 :

threshold voltage or theoretical decomposition voltage

v(x, y, t) :

hypothetical temperature which, fort=∞, corresponds toφ s (x,y)

v m(t):

hypothetical temperature which, fort=∞, correspouds toφ m

w :

complex number defined in Fig. 2c

x, y :

Cartesian coordinates

z :

complex number defined in Fig. 2a

α:

thermal diffusivity

ζ:

complex number defined in Fig. 2b

η c :

cathodic overpotential

κ:

electric conductivity of solution or thermal conductivity of medium

φ m :

potential of metal

φ s (x,y):

potential of solution

i, j, k:

ordinal numbers of division ofx, y, t

References

  1. [1]

    C. Wagner,J. Electrochem. Soc. 98 (1951) 116.

  2. [2]

    C. W. Tobias and R. Wijsman,J. Electrochem Soc. 100 (1953) 459.

  3. [3]

    F. Hine, S. Yoshizawa and S. Okada,J. Electrochem. Soc. 103 (1956) 186.

  4. [4]

    J. A. Klingert, S. Lynn and C. W. Tobias,Electrochim. Acta 9 (1964) 297.

  5. [5]

    J. Newman, ‘Electrochemical Systems,’ Prentice Hall, Engelwood Cliffs, NJ (1973).

  6. [6]

    S. Yoshizawa (editor), ‘Denki Kagaku,’ Vol. 3, Kyoritsushuppan, Tokyo (1974).

  7. [7]

    R. Alkire, T. Bergh and R. L. Sani,J. Electrochem. Soc. 125 (1978) 1981.

  8. [8]

    M. Takahashi and N. Masuko, ‘Kogyodenkai no Kagaku’, Agune, Tokyo (1979).

  9. [9]

    N. Ibl. ‘Comprehensive Treatise of Electrochemistry,’ Vol. 6, Plenum Press, New York (1983) pp. 239–315.

  10. [10]

    Y. Nishiki, K. Aoki, K. Tokuda and H. Matsuda,J. Appl. Electrochem. 14 (1984) 653.

  11. [11]

    F. Hine, ‘Electrode Processes and Electrochemical Engineering’, Plenum Press, New York (1985).

  12. [12]

    H. Kawamoto,Denki Kagaku 53 (1985) 98.

  13. [13]

    H. Shih and H. W. Pickering,J. Electrochem. Soc. 134 (1987) 551.

  14. [14]

    E. C. Dimpault-Darcy and R. E. White,J. Electrochem. Soc. 135 (1988) 656.

  15. [15]

    S. Yoshizawa, Y. Mayazaki and A. Katagiri,Nippon Kagaku Kaishi (1977) 19.

  16. [16]

    S. Yoshimura, A. Katagiri and S. Yoshizawa.Nippon Kagaku Kaishi (1978) 1144.

  17. [17]

    Y. Miyazaki, A. Katagiri, S. Yoshizawa and Z. Takehara,Mem. Fac. Eng. Kyoto Univ. 49 (1987) 162.

  18. [18]

    Y. Miyazaki, A. Katagiri and S. Yoshizawa,J. Appl. Electrochem. 17, (1987) 113.

  19. [19]

    Y. Miyazaki, A. Katagiri and S. Yoshizawa,J. Appl. Electrochem. 17 (1987) 877.

  20. [20]

    A. Katagiri and Y. Miyazaki, Abstract No. G324, presented at the 54th Meeting of the Electrochemical Society of Japan, 5–7 April 1987, Osaka.

  21. [21]

    A. Katagiri, Abstract No. D105 presented at the 55th Meeting of the Electrochemical Society of Japan, 5–7 April 1988, Tokyo.

  22. [22]

    H. S. Carslaw and J. C. Jaeger ‘Conduction, of Heat in Solids’, Oxford University Press London (1959).

  23. [23]

    H. Fletcher Moulton,Proc. London Math. Soc., Ser. 2 3 (1905) 104.

  24. [24]

    M. Abramowitz and I. A. Stegun, ‘Handbook of Mathematical Functions’, Dover New York (1970) p. 591.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katagiri, A., Miyazaki, Y. A numerical method of calculating secondary current distributions in electrochemical cells. J Appl Electrochem 19, 281–286 (1989). https://doi.org/10.1007/BF01062313

Download citation

Keywords

  • Boundary Condition
  • Physical Chemistry
  • Steady State
  • Temperature Distribution
  • Heat Conduction