Journal of Pharmacokinetics and Biopharmaceutics

, Volume 6, Issue 6, pp 547–558 | Cite as

Statistical moments in pharmacokinetics

  • Kiyoshi Yamaoka
  • Terumichi Nakagawa
  • Toyozo Uno


Statistical moments are parameters that describe the characteristics of the time courses of plasma concentration (area, mean residence time, and variance of residence time) and of the urinary excretion rate that follow administration of a single dose of a drug. The relationship between the moments of a time-course curve and pharmacokinetic profiles of drug disposition, i.e., absorption, distribution, metabolism, and excretion, is described. The moments are related to the extent and rate of bioavailability, and it is shown that they can be effectively applied to the deconvolution operation.

Key words

statistical moments network theory pharmacokinetics bioavailability deconvolution plasma concentration-time curve urinary excretion rate-time curve compartment models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Teorell. Kinetics of distribution of substances administered to body. I. The extravascular modes of administration.Arch. Int. Pharmacodyn. Ther. 57:205–225 (1937).Google Scholar
  2. 2.
    T. Teorell. Kinetics of distribution of substances administered to the body. II. The intravascular modes of administration.Arch. Int. Pharmacodyn. Ther. 57:226–240 (1937).Google Scholar
  3. 3.
    R. Dominguez and E. Pomerene. Calculation of the rate of absorption of exogeneous creatinine.Proc. Soc. Exp. Biol. Med. 60:173–181 (1945).PubMedCrossRefGoogle Scholar
  4. 4.
    E. Nelson. Urinary excretion kinetics for evaluation of drug absorption I.J. Am. Pharm. Assoc. 48:489–495 (1945).CrossRefGoogle Scholar
  5. 5.
    J. G. Wagner and E. Nelson. Per cent absorbed time plots derived from blood level and/or urinary excretion data.J. Pharm. Sci. 52:610–611 (1963).PubMedCrossRefGoogle Scholar
  6. 6.
    J. G. Wagner and E. Nelson. Kinetics analysis of blood levels and urinary excretion in the absorptive phase after single doses of drug.J. Pharm. Sci. 53:1392–1403 (1964).PubMedCrossRefGoogle Scholar
  7. 7.
    J. G. Wagner and J. I. Northam. Estimation of volume of distribution and half-life of a compound after rapid intravenous injection.J. Pharm. Sci. 56:529–531 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Nogami, M. Hanano, S. Awazu, and H. H. Moon. Pharmacokinetic analysis on the disappearance of ethoxybenzamide from plasma: Statistical treatment of data of two compartment model by digital computer.Chem. Pharm. Bull. 17:2097–2104 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    R. E. Wiegant and P. G. Sanders. Calculation of kinetic constants from blood levels of drugs.J. Pharmacol. Exp. Ther. 146:271–275 (1964).Google Scholar
  10. 10.
    J. F. Borzelleca and W. Lowenthal. Drug absorption from the rectum. II.J. Pharm. Sci. 55:151–154 (1966).PubMedCrossRefGoogle Scholar
  11. 11.
    W. Lowenthal and B. L. Vitsky. Computer program from a double exponential equation to determine biological constants.J. Pharm. Sci. 56:169–173 (1967).PubMedCrossRefGoogle Scholar
  12. 12.
    D. G. Gardner, J. G. Gardner, G. Laush, and W. W. Meinke. Method for the analysis of multicomponent exponential decay curves.J. Chem. Phys. 31:978–986 (1959).CrossRefGoogle Scholar
  13. 13.
    S. D. Foss. A method of exponential curve fitting by numerical integration.Biometrics 26:815–821 (1970).CrossRefGoogle Scholar
  14. 14.
    R. G. Cornell. A method for fitting linear combinations of exponentials.Biometrics 18:104–113 (1962).CrossRefGoogle Scholar
  15. 15.
    R. Aris. On the dispersion of a solute in a fluid flowing through a tube.Proc. Roy. Soc. A235:67–77 (1956).CrossRefGoogle Scholar
  16. 16.
    D. M. Himmelblau and K. B. Bischoff. Process analysis and simulation. InDeterministic Systems, Wiley, New York, 1968.Google Scholar
  17. 17.
    J. X. Hearon. Theorems of linear systems.Ann. N.Y. Acad. Sci. 108:36–68 (1963).PubMedCrossRefGoogle Scholar
  18. 18.
    C. D. Thron. Linearity of superposition in pharmacokinetics.Pharmacol. Rev. 26:3–31 (1974).PubMedGoogle Scholar
  19. 19.
    L. Z. Benet. General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics.J. Pharm. Sci. 61:536–541 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    R. L. Schoenfeld. Linear network theory and tracer analysis.Ann. N.Y. Acad. Sci. 108:69–91 (1963).PubMedCrossRefGoogle Scholar
  21. 21.
    V. F. Smolen, B. D. Turrie, and W. A. Wiegand. Drug input optimization: Bioavailabilityeffected time-optimal control of multiple, simultaneous, pharmacological effects and their interrelationships.J. Pharm. Sci. 61:1941–1952 (1972).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Yamaoka and T. Nakagawa. Application of numerical Laplace transformation to Chromatographic peak analysis.J. Chromatog. 92:213–222 (1974).CrossRefGoogle Scholar
  23. 23.
    O. Lievenspiel and W. K. Smith. Notes on the diffusion-type model for the longitudinal mixing flow.Chem. Eng. Sci. 7:187–191 (1957).Google Scholar
  24. 24.
    D. A. McQuarrie. On the stochastic theory of chromatography.J. Chem. Phys. 38:437–445 (1963).CrossRefGoogle Scholar
  25. 25.
    J. G. Wagner. An overview of the analysis and interpretation of bioavailability studies in man.Arzneim. Forsch. 26:105–108 (1976).Google Scholar
  26. 26.
    A. Rescigno and G. Segre.Drug and Tracer Kinetics, Blaisdell, Waltham, Mass., 1966, p. 102.Google Scholar
  27. 27.
    H. Kiwada, K. Morita, M. Hayashi, S. Awazu, and M. Hanano. A new numerical calculation method for deconvolution in linear compartment analysis for pharmacokinetics.Chem. Pharm. Bull. 25:1312–1318 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    K. C. Kwan, E. L. Foltz, G. O. Breault, J. E. Baer, and J. A. Totaro. Pharmacokinetics of methyldopa in man.J. Pharmacol. Exp. Ther. 198:264–277 (1976).PubMedGoogle Scholar
  29. 29.
    D. L. Smith, J. G. Wagner, and G. C. Gerritsen. Absorption, metabolism, and excretion of 5-methylpyrazole-3-carboxylic acid in the rat, dog, and human.J. Pharm. Sci. 56:1150–1157 (1967).PubMedCrossRefGoogle Scholar
  30. 30.
    E. Krüger-Thiemer and S. P. Eriksen. Mathematical model of sustained-release preparations and its analysis.J. Pharm. Sci. 55:1249–1253 (1966).CrossRefGoogle Scholar
  31. 31.
    P. N. Maurice, W. Reiss, W. Welke, and K. Amson. Cephacetril (C36278-Ba), eines neues Antibioticum aus der Cephalosporinreihe.Arzneim. Forsch. 24:1497–1501 (1974).Google Scholar
  32. 32.
    K. Dvoraček, Z. Modr, O. Schmidt, and A. Necaskova. Contribution to the pharmacokinetics of a new cephalosporin derivative.Arzneim. Forsch. 24:1467–1501 (1974).Google Scholar
  33. 33.
    P. E. Gower, C. H. Dash, and C. H. O'Collaghan. Serum and blood concentration of sodium cephalexin in man given single intramuscular and intravenous injection.J. Pharm. Pharmacol. 25:376–381 (1973).PubMedCrossRefGoogle Scholar
  34. 34.
    A. R. Disanto and J. G. Wagner. Pharmacokinetics of highly ionized drug. III. Methylene blue-blood levels in the dog and tissue levels in the rat following intravenous administration.J. Pharm. Sci. 61:1090–1094 (1972).PubMedCrossRefGoogle Scholar
  35. 35.
    J. G. Wagner. Linear pharmacokinetic models and vanishing exponential terms: Implication in pharmacokinetics.J. Pharmacokin. Biopharm. 4:395–425 (1976).CrossRefGoogle Scholar
  36. 36.
    J. G. Wagner. A modern review of pharmacokinetics.J. Pharmacokin. Biopharm. 1:363–401 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Kiyoshi Yamaoka
    • 1
  • Terumichi Nakagawa
    • 1
  • Toyozo Uno
    • 1
  1. 1.Faculty of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations