Advertisement

Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling on hepatic elimination

  • Michael S. Roberts
  • John D. Donaldson
  • Malcolm Rowland
Article

Abstract

The residence time distribution of noneliminated solutes in the liver can be represented by a variety of stochastic models. The dispersion model (closed and mixed boundary conditions), gamma distribution, log normal distribution and normal distribution models were used to describe output concentration-time profiles after bolus injections into the liver of labeled erythrocytes and albumin. The dispersion model and log normal distribution model provide the best representation of the data and give similar estimates of relative dispersion and availability for varying hepatocellular enzyme activity. The availability of solutes eliminated from the liver by first-order kinetics is determined by the residence time distribution of the solute in the liver and not on events occurring in the liver when a uniform enzyme distribution is assumed. Both enzyme heterogeneity (axial or transverse) and hepatocyte permeability may affect solute availability. A more complex model accounting for enzyme distribution and the micromixing of solute within the liver is required for solutes undergoing saturable kinetics.

Key words

hepatic extraction stochastic models dispersion gamma distribution log normal distribution enzyme heterogeneity drug distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton, IL, 1975, pp. 57–128.Google Scholar
  2. 2.
    M. Rowland and T. N. Tozer.Clinical Pharmacokinetics: Concepts and Applications, Lea & Febiger, Philadelphia, 1980, pp. 48–76.Google Scholar
  3. 3.
    M. S. Roberts and M. Rowland. Hepatic elimination-dispersion model.J. Pharm. Sci. 74:585–587 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    K. S. Pang and M. Rowland. Hepatic clearance of drugs. 1. Theoretical considerations of a “well stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).CrossRefGoogle Scholar
  5. 5.
    O. Levenspiel.Chemical Reaction Engineering, Wiley, New York, 1972, pp. 253–315.Google Scholar
  6. 6.
    L. Bass, P. J. Robinson, and A. J. Bracken. Hepatic elimination of flowing substances: The distributed mode.J. Theor. Biol. 72:161–184 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    E. L. Forker and B. Luxon. Hepatic transport kinetics and plasma disappearance curves: distributed modeling versus conventional approach.Am. J. Physiol. 235:E648-E660 (1978).PubMedGoogle Scholar
  8. 8.
    M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 2. Steady-state considerations. Influence of blood flow, protein binding and hepatocellular enzymatic activity.J. Pharmacokin. Biopharm. 14:261–288 (1986).CrossRefGoogle Scholar
  9. 9.
    L. Bass. Convection-dispersion modelling of hepatic elimination.J. Pharm. Sci. 75:321–322 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Bass, M. S. Roberts, and P. J. Robinson. On the relation between extended forms of the sinusoidal perfusion and of the convection-dispersion models of hepatic elimination.J. Theor. Biol. 126:457–482 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Weiss. Moments of physiological transit time distributions and time course of drug disposition in the body.J. Math. Biol. 15:305–318 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–260 (1986).CrossRefGoogle Scholar
  13. 13.
    J. J. Gumucio and D. L. Miller. Functional implications of liver cell heterogeneity.Gastroenterology 60:393–403 (1981).Google Scholar
  14. 14.
    C. A. Goresky. Kinetic interpretation of hepatic multiple-indicator dilution studies.Am. J. Physiol. 245:G1-G12 (1983).PubMedGoogle Scholar
  15. 15.
    C. P. Rose and C. A. Goresky. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation.Circ. Res. 39:541–554 (1976).PubMedCrossRefGoogle Scholar
  16. 16.
    M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 3. Application to metabolite formation and elimination kinetics.J. Pharmacokin. Biopharm. 14:289–308 (1986).CrossRefGoogle Scholar
  17. 17.
    M. S. Roberts and M. Rowland. Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics; analysis with a dispersion model.J. Pharm. Pharmacol. 38:117–181 (1986).CrossRefGoogle Scholar
  18. 18.
    N. L. Johnson and S. Kotz.Continuous Univariant Distributions—1, Houghton Mifflin, Boston, 1970, pp. 137–153.Google Scholar
  19. 19.
    M. C. K. Tweedie. Functions of a statistical variate with given means with special reference to Laplacian distributions.Proc. Cambr. Phil. Soc. 41:41–49 (1947).CrossRefGoogle Scholar
  20. 20.
    C. W. Sheppard.Basic Principles of the Tracer Method, Wiley, New York, 1962, pp. 166–213.Google Scholar
  21. 21.
    M. E. Wise. Tracer dilution curves in cardiology and random walk and lognormal distributions.Acta Physiol. Pharmacol. Neerland. 4:175–204 (1966).Google Scholar
  22. 22.
    M. Weiss. Use of gamma distributed residence times in pharmacokinetics.Eur. J. Clin. Pharmacol. 25:695–702 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    N. L. Johnson and S. Kotz.Continuous Univeriant Distributions—1, Houghton Mifflin, Boston, 1970, pp. 166–206.Google Scholar
  24. 24.
    C. Y. Wen and L. T. Fan.Models for Flow Systems and Chemical Reactors, Marcel Dekker, New York, 1985, pp. 281–330.Google Scholar
  25. 25.
    B. A. Buffham and L. G. Gibilaro. A generalisation of the tank-in-series mixing model.Am. Inst. Chem. Eng. J. 14:805–806 (1968).CrossRefGoogle Scholar
  26. 26.
    A. W. Wolkoff, C. A. Goresky, J. Sellin, Z. Gatmaitan, and I. M. Arias. Role of ligandin in transfer of bilirubin from plasma into liver.Am. J. Physiol. 236:E636-E648 (1979).Google Scholar
  27. 27.
    A. B. Ahmad. Ph.D. thesis, University of Bath (1982).Google Scholar
  28. 28.
    F. Galton. The geometric mean in vital and social statistics.Proc. Roy. Soc. London 29:365–367 (1879).CrossRefGoogle Scholar
  29. 29.
    K. V. Bury.Statistical Models in Applied Science, Wiley, New York, 1974, p. 279.Google Scholar
  30. 30.
    S. Keiding and E. Chiaratini. Effect of sinusoidal perfusion on galactose elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 205:415–470 (1978).Google Scholar
  31. 31.
    S. Keiding and E. Steiness. Flow dependence of propranolol elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 230:474–477 (1984).PubMedGoogle Scholar
  32. 32.
    K. L. Zierler. Theory on the use of arterio venous concentration differences for measuring metabolism in steady and non-steady states.J. Clin. Invest 40:2111–2125 (1961).PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Y. Sawada, Y. Sugiyama, Y. Miyamoto, T. Iga, and M. Hanano. Hepatic drug clearance model: comparison among the distributed, parallel-tube and well-stirred models.Chem. Pharm. Bull. 33:319–326 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharm. Biopharm. 1:123–136 (1973).CrossRefGoogle Scholar
  35. 35.
    P. V. Pederson. Curve fitting and modelling in pharmacokinetics and some practical experience with NONLIN and a new programme FUNFIT.J. Pharmacokin. Biopharm. 5:513–531 (1977).CrossRefGoogle Scholar
  36. 36.
    K. S. Pang and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liverin situ preparation.J. Pharmacokin. Biopharm. 5: 655–680 (1977).CrossRefGoogle Scholar
  37. 37.
    A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: Discrimination between the “well-stirred” and “ parallel-tube” models.J. Pharm. Pharmacol. 35:219–244 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    D. B. Jones, D. J. Morgan, G. W. Mihaly, L. K. Webster, and R. A. Smallwood. Discrimination between venous equilibrium and sinusoidal models of hepatic drug elimination in isolated perfused rat liver by perturbation of propranolol protein binding.J. Pharmacol. Exp. Ther. 229:522–526 (1984).PubMedGoogle Scholar
  39. 39.
    L. Bass. Flow dependence of first-order uptake of substances by heterogeneously perfused organs.J. Theor. Biol. 86:365–376 (1980).PubMedCrossRefGoogle Scholar
  40. 40.
    E. L. Forker and B. A. Luxon. Hepatic transport kinetics: effect of an anatomic and metabolic heterogeneity on estimates of the average transfer coefficients.Am. J. Physiol. 243: G532-G540 (1982).PubMedGoogle Scholar
  41. 41.
    E. L. Forker and B. A. Luxon. Albumin binding and hepatic uptake: the importance of model selection.J. Pharm. Sci. 72:1322–1323 (1983).CrossRefGoogle Scholar
  42. 42.
    L. M. Riccardi.Diffusion Processes and Related Topics in Biology. Lecture Notes in Biomathematics, Vol. 14, Springer, New York, 1977, pp. 59–65.CrossRefGoogle Scholar
  43. 43.
    J. F. Wehner and R. H. Wilhelm. Boundary conditions of flow reactor.Chem. Eng. Sci. 8:89–93 (1956).CrossRefGoogle Scholar
  44. 44.
    R. A. Weisiger. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances by the liver.Proc. Natl. Acad. Sci. (U.S.)82:1563–1567 (1985).CrossRefGoogle Scholar
  45. 45.
    R. A. Weisiger, C. M. Mendel, and R. C. Cavalieri. The hepatic sinusoid is not well-stirred. Estimation of the degree of axial mixing by analysis of lobuler concentration gradients formed during uptake of thyroxine by the perfused rat liver.J. Pharm. Sci. 75: 233–237 (1986).PubMedCrossRefGoogle Scholar
  46. 46.
    L. Bass. Saturation kinetics in hepatic drug removal: A statistical approach to functional heterogeneity.Am. J. Physiol. 244:G583-G589 (1983).PubMedGoogle Scholar
  47. 47.
    A. Koo, I. Y. Liang, and K. K. Cheng. The terminal hepatic microcirculation in the rat.Quart. J. Exp. Physiol. 60:261–266 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    J. L. Folks and R. S. Chhikara. The inverse gaussian distribution and its statistical application—A review.J. Roy. Stat. Soc. B40:263–289 (1978).Google Scholar
  49. 49.
    C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: The transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    K. S. Pang and R. N. Stillweil. An understanding of the role of enzyme localisation of the liver on metabolite kinetics: A computer simulation.J. Pharmacokin. Biopharm. 11:451–468 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Michael S. Roberts
    • 1
  • John D. Donaldson
    • 2
  • Malcolm Rowland
    • 3
  1. 1.School of PharmacyUniversity of TasmaniaHobartAustralia
  2. 2.Department of MathematicsUniversity of TasmaniaHobartAustralia
  3. 3.Department of PharmacyUniversity of ManchesterManchesterEngland

Personalised recommendations