Comparative pharmacokinetics of caffeine in young and elderly men

  • James Blanchard
  • Stewart J. A. Sawers


The phamacokinetic behavior of caffeine was compared in a group of eight healthy young men aged 20.5±2.0 years (mean ± SD), and in a group of eight healthy, elderly men aged 71.2±3.9 years. Each subject was given a 5 mg/kg dose of caffeine as either an aqueous oral solution or an intravenous infusion over 30 min using a randomized crossover design. Plasma and urine samples were collected for 24 hr following each dose and analyzed for caffeine content using high-performance liquid chromatography.

The peak times (tmax), peak concentrations (Cmax), and the percentage of the peroral dose systemically available, F(%), were essentially identical in both age groups, indicating that caffeine was absorbed rapidly and completely after peroral administration. These results also indicated that the first-pass metabolism observed in rats following the peroral administration of caffeine does not occur in either human group studied here. The elimination of caffeine during its terminal disposition phase was log-linear. Several between-group comparisons of other pharmacokinetic parameters were made. Although the average elimination rate constant was greater in the elderly, the difference did not reach statistical significance, possibly because of the considerable intersubject variability in the elimination rate of caffeine, with halflives ranging from 2.27 to 9.87 hr. The average apparent volume of distribution was significantly lower in the elderly subjects while the clearances were slightly, but not significantly, larger in the elderly subjects. It appears that most aspects of the pharmacokinetic behavior of caffeine are very similar in young and elderly men.

Key words

caffeine Pharmacokinetics comparative young elderly men 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Greden. Coffee, tea and you. The Sciences19:6–11 (1979).CrossRefGoogle Scholar
  2. 2.
    J. M. Ritchie. Central nervous system stimulants, the xanthines. In: L. S. Goodman and A. Gilman (eds.),The Pharmacologic Basis of Therapeutics, fifth ed. Macmillan, New York, 1975, pp. 367–378.Google Scholar
  3. 3.
    D. A. Holloway. Drug problems in the geriatric patient.Drug Intell. Clin. Pharm. 8:332–342 (1974).Google Scholar
  4. 4.
    A. D. Bender. Pharmacodynamic principles of drug therapy in the aged.J. Am. Geriatr. Soc. 22:269–303 (1974).CrossRefGoogle Scholar
  5. 5.
    J. W. Gorrod. Absorption, metabolism and excretion of drugs in geriatric subjects.Geront. Clin. 16:30–42 (1974).CrossRefGoogle Scholar
  6. 6.
    E. J. Triggs and R. L. Nation. Pharmacokinetics in the aged: a review.J. Pharmacokin. Biopharm. 3:387–418 (1975).CrossRefGoogle Scholar
  7. 7.
    J. Crooks, K. O'Malley, and I. H. Stevenson. Pharmacokinetics in the elderly.Clin. Pharmacokin. 1:280–296 (1976).CrossRefGoogle Scholar
  8. 8.
    A. Aldridge, J. V. Aranda, and A. H. Neims. Caffeine metabolism in the newborn.Clin. Pharmacol. Ther. 25:447–453 (1979).PubMedGoogle Scholar
  9. 9.
    J. Axelrod and J. Reichenthal. The fate of caffeine in man and a method for its estimation in biological material.J. Pharmacol. Exp. Ther. 107:519–523 (1953).PubMedGoogle Scholar
  10. 10.
    H. H. Cornish and A. A. Christman. A study of the metabolism of theobromine, theophylline, and caffeine in man.J. Biol. Chem. 218:315–323 (1957).Google Scholar
  11. 11.
    W. D. Parsons and A. H. Neims. Effect of smoking on caffeine clearance.Clin. Pharmacol. Ther. 24:40–45 (1978).PubMedGoogle Scholar
  12. 12.
    J. M. Trang, J. Blanchard, K. A. Conrad, and G. G. Harrison. Effect of vitamin C on the pharmacokinetics of caffeine in elderly men.Am. J. Clin. Nutr. 35:487–494 (1982).PubMedGoogle Scholar
  13. 13.
    J. Blanchard, J. D. Mohammadi, and K. A. Conrad. Improved liquid-chromatographic determination of caffeine in plasma.Clin. Chem. 26:1351–1354 (1980).PubMedGoogle Scholar
  14. 14.
    J. Blanchard, J. D. Mohammadi, and J. M. Trang. Elimination of a potential interference in assay for plasma caffeine.clin. Chem. 27:637–639 (1981).PubMedGoogle Scholar
  15. 15.
    M. Jaffé, Ueber den niederschlag welchen pikrinsaure in normalem harn erzeugt und über eine neue reaction des kreatinins.Hoppe Seylers Z. Physiol. Chem. 10:391–400 (1886).Google Scholar
  16. 16.
    J. Blanchard, Plasma protein binding of caffeine in young and elderly men.J. Pharm. Sci.,71:1415–1418 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    J. A. Nelder and R. Mead. A simplex method for function minimization.Computer J. 7:308–313 (1965).CrossRefGoogle Scholar
  18. 18.
    J. H. Ottaway. Normalization in the fitting of data by iterative methods.Biochem. J. 134:729–736 (1973).PubMedCentralPubMedGoogle Scholar
  19. 19.
    H. G. Boxenbaum; S. Riegelman, and R. M. Elashoff. Statistical estimations in pharmacokinetics.J. Pharmacokin. Biopharm. 2:123–148 (1974).CrossRefGoogle Scholar
  20. 20.
    D. S. Riggs.The Mathematical Approach to Physiological Problems. Williams and Wilkins, Baltimore, 1963, p. 51.Google Scholar
  21. 21.
    M. Gibaldi and D. Perrier.Pharmacokinetics. Marcel Dekker, New York, 1975.Google Scholar
  22. 22.
    R. A. Upton, S. Riegelman, and L. B. Sheiner. Bioavailability assessment as influenced by changes in drug disposition. In: K. S. Albert (ed.),Drug Absorption and Disposition: Statistical Considerations. Am. Pharm. Assoc., Washington, D.C., 1980, pp. 77–85.Google Scholar
  23. 23.
    Anon.Scientific Tables, K. Diem and C. Lentner (eds.), Ciba-Geigy, Basel, 1970, p. 711.Google Scholar
  24. 24.
    M. Sheehan and P. Haythorn. Rapid gas-chromatographic determination of underivatized theophylline in whole blood.J. Chromatogr. 117:393–398 (1976).CrossRefGoogle Scholar
  25. 25.
    M. A. Peat and T. A. Jennison. Analysis of theophylline in serum and whole blood samples by high-pressure liquid chromatography.J. Analyt. Toxicol. 1:204–207 (1977).CrossRefGoogle Scholar
  26. 26.
    J. P. Kampmann and J. E. Molholm Hansen. Renal excretion of drugs. In:Drugs and the Elderly—Perspectives in Geriatric Clinical Pharmacology. University Park Press, Baltimore, 1979, pp. 77–87.Google Scholar
  27. 27.
    A. Aldridge, W. D. Parsons, and A. H. Neims. Stimulation of caffeine metabolism in the rat by 3-methylcholanthrene.Life Sci. 21:967–974 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    R. Latini, M. Bonati, D. Castelli, and S. Garattini. Dose-dependent kinetics of caffeine in rats.Toxicol. Lett. 2:267–270 (1978).CrossRefGoogle Scholar
  29. 29.
    S. Garattini. Third international caffeine workshop.Nutr. Rev. 39:183–191 (1981).Google Scholar
  30. 30.
    R. Latini, M. Bonati, E. Marzi, M. T. Tacconi, B. Sadurska, and A. Bizzi. Caffeine disposition and effects in young and one-year old rats.J. Pharm. Pharmacol. 32:596–599 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    W. D. Parsons, J. V. Aranda, and A. H. Neims. Elimination of transplacentally acquired caffeine in full-term neonates.Pediatr. Res. 10:333 (1976).Google Scholar
  32. 32.
    J. V. Aranda, W. Gorman, E. W. Outerbridge, and A. H. Neims. Pharmacokinetic disposition of caffeine in premature neonates with apnea.Pediatr. Res. 11:414 (1977).CrossRefGoogle Scholar
  33. 33.
    R. Newton, L. J. Broughton, M. J. Lind, P. J. Morrison, H. J. Rogers, and I. D. Bradbrook. Plasma and salivary pharmacokinetics of caffeine in man.Eur. J. Clin. Phamacol. 21:45–52 (1981).CrossRefGoogle Scholar
  34. 34.
    M. Essam Fikry and M. H. Aboul-Wafa. Intestinal absorption in the old.Geront. Clin. 7:171–178 (1965).CrossRefGoogle Scholar
  35. 35.
    D. P. Richey and A. D. Bender. Pharmacokinetic consequences of aging.Annu. Rev. Pharmacol. Toxicol. 17:49–65 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    I. S. Edelman and J. Liebman. Anatomy of body water and electrolytes.Am. J. Med. 27:256–277 (1959).PubMedCrossRefGoogle Scholar
  37. 37.
    J. V. Aranda, J. L. Brazier, A. T. Louridas, and B. I. Sasyniuk. Methylxanthine metabolism in the newborn infant. In: L. F. Soyka and G. P. Redmond (eds.),Drug Metabolism in the Immature Human. Raven Press, New York, 1981, pp. 183–198.Google Scholar
  38. 38.
    H. Wietholtz, M. Vogelin, M. J. Arnaud, J. Bircher, and R. Preisig. Assessment of the cytochrome P-448 dependent liver enzyme system by a caffeine breath test.Eur. J. Clin. Pharmacol. 21:53–59 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    M. M. Callahan, R. S. Robertson, M. J. Arnaud, A. R. Branfman, M. F. McComish, and D. W. Yesair. Human metabolism of [l-methyl-14C]-and [2-14C] caffeine after oral administration.Drug Metab. Dispos. 10:417–423 (1982).PubMedGoogle Scholar
  40. 40.
    U. Klotz and G. R. Wilkinson. Hepatic elimination of drugs in the elderly. In: K. Kitani, (ed.),Liver and Aging. Elsevier/North Holland Biomedical Press, New York, 1978, pp. 367–380.Google Scholar
  41. 41.
    E. J. Antal, P. A. Kramer, S. A. Mercik, D. J. Chapron, and I. R. Lawson. Theophylline pharmacokinetics in advanced age.Br. J. Clin. Pharmacol. 12:637–645 (1981).PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    A. H. Neims. Third international caffeine workshop.Nutr. Rev. 39:183–191 (1981).Google Scholar
  43. 43.
    G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).PubMedGoogle Scholar
  44. 44.
    D. G. Greenblatt, M. Divol Allen, J. S. Harmatz, and R. I. Shader. Diazepam disposition determinants.Clin. Pharmacol. Ther. 27:301–312 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    J. G. Wagner. Simple model to explain effects of plasma protein binding and tissue binding to calculated volumes of distribution, apparent elimination rate constants and clearances.Eur. J. Clin. Pharmacol. 10:425–432 (1976).PubMedCrossRefGoogle Scholar
  46. 46.
    R. E. Schneider, H. Bishop, R. A. Yates, C. P. Quarterman, and M. J. Kendall. Effect of age on plasma propranolol levels.Br. J. Clin. Pharmacol. 10:169–170 (1980).PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    D. G. Greenblatt and R. I. Shader. Effects of age and other drugs on benzodiazepine kinetics.Arzn. Forsch. 30:886–890 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • James Blanchard
    • 1
  • Stewart J. A. Sawers
    • 2
  1. 1.Dept. of Pharmaceutical Sciences, College of PharmacyUniversity of ArizonaTucson
  2. 2.University Dept. of Therapeutics & Clinical PharmacologyThe Royal InfirmaryEdinburghScotland

Personalised recommendations