Estimation of population characteristics of pharmacokinetic parameters from routine clinical data

  • Lewis B. Sheiner
  • Barr Rosenberg
  • Vinay V. Marathe


A general data analysis technique estimates average population values of pharmacokinetic parameters and their interindividual variability from clinical pharmacokinetic data gathered during the routine care of patients. Several drug concentration values from each individual, along with dosage information and the values of other routinely assessed variables suffice for purposes of analysis. The Maximum Likelihood principle estimates underlying population values without the necessity for the intermediate estimation of individual parameter values. The approach is quite general, permitting the use of nonlinear statistical models with both fixed and random effects. Complex expressions involving physiological variables can be used to define the pharmacokinetic parameters. Thus, the relationship of physiological factors to parameter values can be assessed. The generality and appropriateness of the analysis technique are demonstrated by analysis of a set of data derived from 141 patients receiving the drug digoxin.

Key words

statistics parameter estimation maximum likelihood population parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. B. Sheiner, B. Rosenberg, and K. L. Melmon. Modelling of individual pharmacokinetics for computer-aided drug dosage.Comp. Biomed. Res. 5:441–459 (1972).CrossRefGoogle Scholar
  2. 2.
    C. C. Peck, L. B. Sheiner, C. M. Martin, D. T. Combs, and K. L. Melmon. Computerassisted digoxin therapy.New Engl. J. Med. 289:441–446 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    L. B. Sheiner, H. H. Halkin, C. C. Peck, B. Rosenberg, and K. L. Melmon. Improved computer-assisted digoxin therapy.Ann. Int. Med. 82:619–627 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, 1st ed., Drug Intelligence Publications, Hamilton, Ill., 1975, pp. 65–81.Google Scholar
  5. 5.
    W. L. Chiou and F. H. Hsu. A new simple and rapid method to monitor the renal function based on pharmacokinetic consideration of endogenous creatinine.Res. Comm. Chem. Pathol. Pharmacol. 10:315–330 (1975).Google Scholar
  6. 6.
    R. W. Jelliffe and S. M. Jelliffe. A computer program for estimation of creatinine clearance from unstable serum creatinine levels, age, sex, and weight.Math. Biosci. 14:17–24 (1972).CrossRefGoogle Scholar
  7. 7.
    R. J. Wonnacott and T. H. Wonnacott.Econometrics, Wiley, New York, 1970, pp. 34–38.Google Scholar
  8. 8.
    Y. Bard.Nonlinear Parameter Estimation, Academic Press, New York, 1974, pp. 61–71.Google Scholar
  9. 9.
    Y. Bard.Nonlinear Parameter Estimation, Academic Press, New York, p. 328.Google Scholar
  10. 10.
    Y. Bard.Nonlinear Parameter Estimation, Academic Press, New York, pp. 170–216.Google Scholar
  11. 11.
    H. Halkin, L. B. Sheiner, C. C. Peck, and K. L. Melmon. Determinants of the renal clearance of digoxin.Clin. Pharmacol. Ther. 17:385–394 (1975).PubMedGoogle Scholar
  12. 12.
    T. W. Smith, V. P. Butler, Jr. and E. Haber. Determination of therapeutic and toxic serum digoxin concentrations by radioimmunoassay.New Engl. J. Med. 281:1212–1216 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Oparil. Digitalis assay and its clinical application: Symposium on Cardiac Rhythm Disturbances. I.Med. Clin. N. Am. 60:193–207 (1976).PubMedGoogle Scholar
  14. 14.
    R. H. Reuning, R. A. Sams, and R. E. Notari. Role of pharmacokinetics in drug dosage adjustment. I. Pharmacologic effect kinetics and apparent volume of distribution of digoxin.J. Clin. Pharmacol. 13:127–141 (1973).Google Scholar
  15. 15.
    W. J. Jusko, S. J. Szefler, and A. L. Goldfarb. Pharmacokinetic design of digoxin dosage regimens in relation to renal function.J. Clin. Pharmacol. 15:94–104 (1974).Google Scholar
  16. 16.
    L. B. Sheiner, K. L. Melmon, and B. Rosenberg. Instructional goals for physicians in the use of blood level data-and the contribution of computers.Clin. Pharmacol. Ther. 16:260–271 (1974).PubMedGoogle Scholar
  17. 17.
    J. R. Koup, W. J. Jusko, C. M. Elwood, and R. K. Kohli. Digoxin pharmacokinetics: Role of renal failure in dosage regimen design.Clin. Pharmacol. Ther. 18:9–21 (1975).PubMedGoogle Scholar
  18. 18.
    A. A. MacKinney, Jr. G. H. Burnett, R. L. Conklin, and G. W. Wasson. Comparison of five radioimmunoassays and enzyme bioassay for measurement of digoxin in blood.Clin. Chem. 21:857–859 (1975).PubMedGoogle Scholar
  19. 19.
    G. H. Burnett, R. L. Conklin, G. W. Wasson, and A. A. MacKinney. Variability of standard curves in radioimmunoassay of plasma digoxin.Clin. Chem. 19:725–726 (1973).PubMedGoogle Scholar
  20. 20.
    J. G. Wagner, M. Christensen, E. Sakmar, D. Blair, J. D. Yates, P. W. Willin, III A. J. Sedman, and R. G. Stoll. Equivalence lack in digoxin plasma levels.J. Am. Med. Assoc. 224:199–204 (1973).CrossRefGoogle Scholar
  21. 21.
    D. H. Huffman and D. L. Azarnoff. Absorption of orally given digoxin preparations.J. Am. Med. Assoc. 222:957–960 (1972).CrossRefGoogle Scholar
  22. 22.
    D. H. Huffman, C. V. Manion, and D. L. Azarnoff. Intersubject variation in absorption of digoxin in normal volunteers.J. Pharm. Sci. 64:433–437 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    J. L. Colaizzi. Digoxin.J. Am. Pharm. Assoc. NS15:43–46 (1975).Google Scholar
  24. 24.
    J. G. Wagner. Loading and maintenance doses of digoxin in patients with normal renal function and those with severely impaired renal function.J. Clin. Pharmacol. 14:329–338 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    W. G. Kramer, R. P. Lewis, T. C. Cobb, W. F. Forester, Jr., J. A. Visconti, L. A. Wanke, H. G. Boxenbaum, and R. H. Reuning. Pharmacokinetics of digoxin: Comparison of a twoand a three-compartment model in man.Clin. Pharmacol. Ther. 18:9–21 (1975).Google Scholar
  26. 26.
    D. J. Greenblatt, D. W. Duhme, J. Koch-Weser, and T. W. Smith. Intravenous digoxin as a bioavailability standard: Slow infusion and rapid injection.Clin. Pharmacol. Ther. 15:510–513 (1973).Google Scholar
  27. 27.
    G. A. Ewy, G. G. Kapadia, L. Yao, M. Lullin, and F. I. Marcus. Digoxin metabolism in the elderly.Circulation 39:449–453 (1969).PubMedCrossRefGoogle Scholar
  28. 28.
    R. W. Jelliffe. A mathematical analysis of digitalis kinetics in patients with normal and reduced renal function.Math. Biosci. 1:305–325 (1967).CrossRefGoogle Scholar
  29. 29.
    J. E. Doherty and W. H. Perkins. Studies with tritiated digoxin in human subjects after intravenous administration.Am. Heart J. 63:528–536 (1962).PubMedCrossRefGoogle Scholar
  30. 30.
    E. Steiness. Renal tubular secretion of digoxin.Circulation 50:103–107 (1974).PubMedCrossRefGoogle Scholar
  31. 31.
    J. E. Doherty, W. H. Perkins, J. Gammill, and J. Sherwood. Studies following intramuscular tritiated digoxin in human subjects.Am. J. Cardiol. 15:170–174 (1965).PubMedCrossRefGoogle Scholar
  32. 32.
    L. A. Pagliaro and L. Z. Benet. Pharmacokinetic data.J. Pharmacokin. Biopharm. 3:333–381 (1975).CrossRefGoogle Scholar
  33. 33.
    J. E. Doherty, W. H. Perkins, M. C. Wilson, J. Gammill, C. Dodd, and J. Sherwood. Studies with tritiated digoxin in renal failure.Am. J. Med. 37:536–544 (1964).PubMedCrossRefGoogle Scholar
  34. 34.
    P. M. Bloom, W. B. Nelp, and S. H. Tuell. Relationship of the excretion of tritiated digoxin to renal function.Am. J. Med. Sci. 251:133–144 (1966).PubMedCrossRefGoogle Scholar
  35. 35.
    L. B. Sheiner, B. Rosenberg, V. V. Marathe, and C. C. Peck. Differences in serum digoxin concentrations between outpatients and inpatients: An effect of compliance?Clin. Pharmacol. Ther. 15:239–246 (1974).PubMedGoogle Scholar
  36. 36.
    D. J. Sumner, A. J. Russell, and B. Whiting. Digoxin pharmacokinetics: Multicompartmental analysis and its clinical implications.Br. J. Clin. Pharmacol. 3:221–229 (1976).PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    J. G. Wagner, J. D. Yates, P. W. Willis, E. Sakmar, and R. G. Stoll. Correlation of plasma levels of digoxin in cardiac patients with dose and measures of renal function.Clin. Pharmacol. Ther. 15:291–301 (1973).Google Scholar
  38. 38.
    FMFP, in System 360 Scientific Subroutine Package, Version III, Programmers Manual GH 20-0205-4, International Business Machines Corp. New York, 1970, p. 221.Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Lewis B. Sheiner
    • 1
  • Barr Rosenberg
    • 2
  • Vinay V. Marathe
    • 2
  1. 1.Division of Clinical Pharmacology, Department of Medicine, and the Department of Laboratory MedicineUniversity of CaliforniaSan Francisco
  2. 2.School of Business AdministrationUniversity of CaliforniaBerkeley

Personalised recommendations