Advertisement

Ukrainian Mathematical Journal

, Volume 35, Issue 5, pp 550–555 | Cite as

Strongly cyclic elements of certain operators in spaces of analytic functions

  • N. I. Nagnibida
  • P. P. Nastasiev
Brief Communications
  • 22 Downloads

Keywords

Analytic Function Cyclic Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. M. Grownover and R. C. Hansen, “Commutants of generalized integrations on a space of analytic functions,” Ind. Univ. Math. J.,26, No. 2, 233–245 (1977).Google Scholar
  2. 2.
    N. K. Nikol'skii, “Invariant subspaces in the theory of operators and function theory,” in: Itogi Nauki i Tekhniki/VINITI. Ser. Mat. Analiz, [in Russian], Moscow (1974), pp. 199–412.Google Scholar
  3. 3.
    N. I. Nagnibida, “Properties of operators of generalized integration in an analytic space,” Sib. Mat. Zh.,7, No. 6, 1306–1318 (1966).Google Scholar
  4. 4.
    N. I. Nagnibida, “Equations concerning continuous linear maps of analytic spaces,” Novosibirsk (1981), manuscript deposited in VINITI, 8/20/81, No. 4145-81 Dep.Google Scholar
  5. 5.
    N. I. Nagnibida, “Describing commutants of the integration operator in analytic spaces,” Sib. Mat. Zh.,22, No. 5, 127–131 (1981).Google Scholar
  6. 6.
    N. I. Nagnibida, “Operators commuting with operators of multiplication by analytic functions and quasi-power bases connected with them,” in: Theory of Functions, Functional Analysis and Their Applications [in Russian], Vol. 13, Kharkov Univ. (1971), pp. 63–67.Google Scholar
  7. 7.
    N. I. Nagnibida and V. F. Kovdrysh, “Operator equations in the class of continuous maps of analytic spaces,” Ukr. Mat. Zh.,34, No. 2, 208–212 (1982).Google Scholar
  8. 8.
    M. G. Khaplanov and Kh. R. Rakhmatova, “Pinkerle basis,” Izv. Akad. Nauk Uzb. SSR, Ser. Fiz. Mat. Nauk, No. 2, 29–36 (1966).Google Scholar
  9. 9.
    N. I. Nagnibda and S. S. Linchuk, “Bases in spaces of analytic functions,” Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly. Estestvennye Nauki, No. 2, 16–19 (1980).Google Scholar
  10. 10.
    Yu. F. Korobeinik, “Representing systems,” Izv. Akad. Nauk SSSR, Ser. Mat.,42, No. 2, 325–355 (1978).Google Scholar
  11. 11.
    C. Goffman, Banach Spaces of Analytic Functions [Russian translation], IL, Moscow (1963).Google Scholar
  12. 12.
    J. Delsartes and J. L. Lions, “Transmutations d'opérateurs differentieles dans le domaine complexe,” Comment. Math. Helv.,32, No. 2, 113–128 (1957).Google Scholar
  13. 13.
    V. P. Zakharyuta and M. Yu. Tsar'kov, “Operators commuting with multiplication in spaces of analytic functions of one variables, “ Mat. Zametki,13, No. 2, 269–276 (1973).Google Scholar
  14. 14.
    N. I. Nagnibida, “A class of operators of generalized differentiation in the space of analytic functions in the disk,” in: Theory of Functions, Functional Analysis, and Their Applications [in Russian], Vol. 24, Karkov Univ. (1975), pp. 98–106.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • N. I. Nagnibida
    • 1
  • P. P. Nastasiev
    • 1
  1. 1.Chernovitskii State UniversityUSSR

Personalised recommendations