Bioprocess Engineering

, Volume 9, Issue 6, pp 231–237 | Cite as

The characterization of a viscoelasticity parameter and other rheological properties of various xanthan gum fermentation broths and solutions

  • L. G. Torres
  • A. W. Nienow
  • A. Sánchez
  • E. Galindo


Viscoelasticity has important implications in mass transfer and mixing processes. Previous studies regarding to the viscoelastic behaviour of xanthan solutions have been carried out with diluted solutions or they have not covered a wide range of polymer concentrations. In this study, it was shown that the first normal stress difference measured in fermentation broths is highly dependent on shear rate, and this viscoelastic level is modified by the heat treatment to which the broths are subjected as a postfermentative procedure. The viscoelasticity level is different for xanthan solutions prepared with products arising from different sources and for fermentation broths before the heat treatment, if compared with that measured in end-products. In general, the higher the polymer concentration, the higher the viscoelasticity (expressed as first normal stress difference or Weissenberg number). The addition of a biocide, the change in ionic strength and the addition of sucrose to the xanthan solutions, lead to significant changes in the first normal stress difference.

List of Symbols

A Pa.Sb

constant in first normal stress difference power law (N1=\({\rm A}\dot \gamma ^b\))


constant in first normal stress difference power law (N1=\({\rm A}\dot \gamma ^b\))

c kg m−3

polymer concentration

K Nsn m−2

consistency index

N1 Pa

first normal stress difference


flow behaviour index


Weissenberg number,N1/τ

\(\dot \gamma\) s−1

shear rate

τ Pa

shear stress

τy Pa

Yield stress


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xueming, Z.; Nienow, A. W.; Kent C. A.; Galindo, E.: Improving xanthan fermentation performance by changing agitators. In: Procc. 7th European Conf. on Mixing, Brugge 1991, Vol. I, pp. 277–283Google Scholar
  2. 2.
    Nienow, A. W.; Wisdom, D. J.; Solomon, J.; Machon, V.; Vleck J.: The effect of the rheological complexities on power consumption in an aerated agitated vessel. Chem. Eng. Commun. 19 (1983) 273–293Google Scholar
  3. 3.
    Hickman, A. D.; Nienow, A. W.: Mass transfer and hold-up in an agitated simulated fermentation broth as a function of viscosity. In: Proc. Int. Conf. Bioreactor Fluid Dynamics, Cambridge, 1986, pp. 301–315, BHRA The Fluid Engineering Centre, Cranfield, Bedford, U.K.Google Scholar
  4. 4.
    Ranade, V. R.; Ulbrecht, J.: Gas dispersion in agitated viscous inelastic and viscoelastic liquids. In: Proc. 2nd. Europ. Conf. Mixing, Cambridge 1977, pp. 83–100Google Scholar
  5. 5.
    Oolman T.; Walitza, E.; Chmiel, H.: Transport phenomena in gas-sparged bioreactor. Ann. New York Acad. Sci. 506 (1987) 583–587Google Scholar
  6. 6.
    Suh, I. S.; Schumpe, A.; Deckwer, W.; Kulicke, W. M.: Gas-liquid mass transfer in the bubble column with viscoelastic liquid Can. J. Chem. Eng. 69 (1991) 506–512Google Scholar
  7. 7.
    Schumpe, A.; Deckwer, W. D.: Viscous media in tower bioreactors: Hydrodynamic characteristics and mass transfer properties. Biopr. Eng. 2 (1987) 79–94Google Scholar
  8. 8.
    Galindo, E.; Torrestiana, B.; García-Rejón, A.: Rheological characterization of xanthan fermentation broths and their reconstituted solutions. Biopr. Eng. 4 (1989) 113–118Google Scholar
  9. 9.
    Torrestiana, B.; Galindo, E.; Xue-Ming, E.; Nienow, A. W.: In-fermenter power measurement during a xanthan gum fermentation compared with non-fermentative studies. Trans. I. Chem. E. 69 (1991) Part C, 149–155Google Scholar
  10. 10.
    Barnes, H. A.; Hutton, J. F.; Walters, K.: Normal stress. In: An introduction to rheology. (Ed. K. Walters), Elsevier. New York (1989)Google Scholar
  11. 11.
    Jamieson, A. M.; Southwick, J. G.; Blackwell, J.: Dynamical behaviour of xanthan polysaccharide in solution. J. Polym. Sci. 20 (1982) 1513–1524Google Scholar
  12. 12.
    Torres, L.; Brito, E.; Galindo, E.; Choplin, L.: Viscous behaviour of xanthan aqueous solutions from a variant strain of Xanthomonas campestris. J. Ferment. Bioeng. 75 (1993) 58–64Google Scholar
  13. 13.
    Sánchez, A.; Martínez, A.; Torres, L.; Galindo, E.: Power consumption of three impeller combinations in mixing xanthan fermentation broths. Process Biochem. 27 (1992) 351–365Google Scholar
  14. 14.
    Hanotte, M.; Flores, F.; Torres, L.; Galindo, E.: Apparent yield stress estimation in xanthan gum solutions and fermentation broths using a low-cost viscometer. Chem. Eng. J. 45 (1991) B49-B56Google Scholar
  15. 15.
    Milas, M.; Rinaudo, M.: On the existence of two secondary structures for the xanthan in aqueous solutions. Polymer Bulletin 12 (1984) 507–514Google Scholar
  16. 16.
    Galindo, E.; Badham, R.; Nienow, A. W.: Mixing of simulated xanthan gum broths. In: King, R. (Ed.): Proc. 2nd. Int. Conf. on Bioreactor Fluid Dynamics, Cambridge 1988, pp. 65–78, BHRA The Fluid Engineering Centre, Cranfield, Bedford, U.K.Google Scholar
  17. 17.
    Galindo, E.; Nienow, A. W.: Performance of the Scaba 6SRGT agitator in mixing of simulated xanthan gum broths. Chem. Eng. Technol. 16 (1993) 102–108Google Scholar
  18. 18.
    Galindo, E.; Nienow, A. W.: Mixing of highly viscous simulated xanthan fermentation broths with the Lightnin A-315 impeller. Biotechnol. Prog. 8 (1992) 233–239Google Scholar
  19. 19.
    Bewersdorff, H. W.; Singh, R. P.: Rheological and drag reduction characteristics of xanthan gum solutions. Rheol. Acta 27 (1988) 617–627Google Scholar
  20. 20.
    Funahashi, H.; Yoshida, R.; Taguchi, H.: Effect of glucose concentration on xanthan gum production by Xanthomonas campestris. J. Ferment. Technol. 65 (1987) 603–606Google Scholar
  21. 21.
    Cheftel, J. C.; Cheftel, H.: Introduction a la biochimie et a la technologie des aliments. Volume 1, p. 68, Technique et documentation, Enterprise Modern D'Edition, Paris (1976)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • L. G. Torres
    • 1
  • A. W. Nienow
    • 2
  • A. Sánchez
    • 1
  • E. Galindo
    • 1
  1. 1.Instituto de Biotecnología Departamento de BioingenieríaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.SERC Centre of Biochemical Engineering School of Chemical EngineeringThe University of BirminghamBirminghamUK

Personalised recommendations