Advertisement

Studia Logica

, Volume 55, Issue 2, pp 259–271 | Cite as

Undefinability of propositional quantifiers in the modal system S4

  • Silvio Ghilardi
  • Marek Zawadowski
Article

Abstract

We show that (contrary to the parallel case of intuitionistic logic, see [7], [4]) there does not exist a translation fromS42 (the propositional modal systemS4 enriched with propositional quantifiers) intoS4 that preserves provability and reduces to identity for Boolean connectives and □.

1980 Mathematics subject classifications

Primary 03B45, 06E25 Secondary 18C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fine K., ‘Logics containing K4, Part I’,Journal of Symbolic Logic 34 31–42 (1974);Google Scholar
  2. [2]
    Fine K., ‘Logics containing K4, Part II’,Journal of Symbolic Logic 50 619–651 (1985);Google Scholar
  3. [3]
    Ghilardi S., ‘An algebraic theory of normal forms’,Annals of Pure and Applied Logic 71 (3 189–245 (1995);Google Scholar
  4. [4]
    Ghilardi S., Zawadowski M., ‘A sheaf representation and duality for finitely presented Heyting algebras’, to appear inJournal of Symbolic Logic; Google Scholar
  5. [5]
    Hughes G.E., Cresswell M.J.,A companion to modal logic, Methuen, London (1984);Google Scholar
  6. [6]
    McLane S.,Categories for the working mathematician, Springer, Berlin (1971);Google Scholar
  7. [7]
    Pitts A.M., ‘On an interpretation of second order quantification in first order intuitionistic propositional logic’,Journal of Symbolic Logic 57, 1 33–52 (1992);Google Scholar
  8. [8]
    Shavrukov V.Yu.,Subalgebras of diagonalizable algebras of theories containing arithmetic, Dissertationes Mathematicae, CCCXXIII, Polska Akademia Nauk, Instytut Matematyczny, Warsaw (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Silvio Ghilardi
    • 1
  • Marek Zawadowski
    • 2
  1. 1.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly
  2. 2.Instytut MatematykiUniwersytet WarszawskiWarszawaPoland

Personalised recommendations