Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A geometric characteristic of subclasses of univalent functions

  • 21 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    L. Špaček, “Contribution a la theorie des fonctions univalentes,” Čas. Pěstov. Mat.,62, 12–19 (1933).

  2. 2.

    J. Stankiewicz, “Quelques problemes extremaux dans les classes des fonctions o-angulairement etoillees,” Ann. UMCS A20, No. 6, 59–75 (1966).

  3. 3.

    M. I. S. Robertson, “On the theory of univalent functions,” Ann. Math.37, 374–408 (1936).

  4. 4.

    C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen (1975).

  5. 5.

    P. J. Eenigenburg and F. R. Keogh, “The Hardy class of some univalent functions and their derivatives,” Michigan J. Math.,17, 335–346 (1970).

  6. 6.

    G. M. Goluzin, Geometric Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1966).

  7. 7.

    O. A. Busovskaya and V. V. Goryainov, “Homeomorphic extension of spiral functions,” Ukr. Mat. Zh.,33, No. 5, 656–660 (1981).

  8. 8.

    F. R. Keogh, “Some theorems on conformal mapping of bounded star-shaped domains” Proc. London Math. Soc.,9, 481–491 (1959).

Download references

Author information

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 37, No. 5, pp. 558–562, September–October, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Busovskaya, O.A. A geometric characteristic of subclasses of univalent functions. Ukr Math J 37, 449–453 (1985). https://doi.org/10.1007/BF01061165

Download citation


  • Geometric Characteristic
  • Univalent Function