Journal of Scientific Computing

, Volume 8, Issue 2, pp 135–149

Spectral multidomain technique with Local Fourier Basis

  • M. Israeli
  • L. Vozovoi
  • A. Averbuch


A novel domain decomposition method for spectrally accurate solutions of PDEs is presented. A Local Fourier Basis technique is adapted for the construction of the elemental solutions in subdomains.C1 continuity is achieved on the interfaces by a matching procedure using the analytical homogeneous solutions of a one dimensional equation. The method can be applied to the solution of elliptic problems of the Poisson or Helmholtz type as well as to time discretized parabolic problems in one or more dimensions. The accuracy is tested for several stiff problems with steep solutions.

The present domain decomposition approach is particularly suitable for parallel implementations, in particular, on MIMD type parallel machines.

Key words

Spectral methods multidomain parallel processing Fourier method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zand, T. A. (1989). Spectral methods in Fluid dynamics, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo.Google Scholar
  2. 2.
    Coifman, R. and Meyer, Y. (1991). Remarques sur l'analyse de Fourier à fenêtre, série,C.R. Acad. Sci. Paris 312, 259–261.Google Scholar
  3. 3.
    Karniadakis, G. E., Israeli, M., and Orszag, S. (1991). High-order splitting methods for the incompressible Navier-Stokes equations,J. Comp. Phys. 97(2), 414–443.Google Scholar
  4. 4.
    Peyret, R. (1990). The Chebyshev multidomain approach to stiff problems in fluid mechanics,Comput. Methods Appl. Mech. Eng. (Netherlands),80(1–3), 129–145.Google Scholar
  5. 5.
    Roache, P. J. (1978). A Pseudo-Spectral FFT Technique for non-periodic problems,J. Gomp. Phys. 27, 204–220.Google Scholar
  6. 6.
    Skölermo, G. (1975). A Fourier method for numerical solution of Poisson's equation,Math. Comput. 29(131), 697–711.Google Scholar
  7. 7.
    Whitham, G. B. (1974).Linear and Nonlinear Waves, John Wiley & Sons, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. Israeli
    • 1
  • L. Vozovoi
    • 1
  • A. Averbuch
    • 2
  1. 1.Faculty of Computer ScienceTechnionHaifaIsrael
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations