Ukrainian Mathematical Journal

, Volume 41, Issue 7, pp 841–844 | Cite as

Ergodicity of transitive unimodal transformations of a segment

  • A. M. Blokh
  • M. Yu. Lyubich
Brief Communications

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, BirkhÄuser, Basel, etc. (1980).Google Scholar
  2. 2.
    M. V. Yakobson, “Ergodic theory of one-dimensional maps,” Itogi Nauki i Tekhniki. Seriya Sovr. Probl. Mat., VINITI,2, 204–232 (1985).Google Scholar
  3. 3.
    D. Sullivan, “Quasiconformal homeomorphisms and dynamics. I,” Ann. Math.,122, No. 3, 401–418 (1985).Google Scholar
  4. 4.
    A. M. Blokh and M. Yu. Lyubich, “Attractors of transformations of a segment,” Funkts. Analiz Prilozhen.,21, No. 2, 70–71 (1987).Google Scholar
  5. 5.
    A. M. Blokh and M. Yu. Lyubich, “Typical behavior of trajectories of transformations of a segment,” Teoriya Funktsii, Funkts. Analiz i Ikh Prilozh.,49, 5–16 (1988).Google Scholar
  6. 6.
    A. M. Blokh, “Dynamical systems on one-dimensional branched manifolds. I,” Teoriya Funktsii, Funkts. Analiz i Ikh Prilozh.,46, 8–18 (1986).Google Scholar
  7. 7.
    J. Guckenheimer, “Sensitive dependence on initial conditions for one-dimensional maps,” Communs. Math. Phys.,70, 133–160 (1979).Google Scholar
  8. 8.
    J. Milnor, “On the concept of attractor,” Communs. Math. Phys.,99, 177–195 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. M. Blokh
    • 1
  • M. Yu. Lyubich
    • 1
  1. 1.Leningrad Section of the Mathematics InstituteAcademy of Sciences of the USSRUSSR

Personalised recommendations