Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Finite nilpotent algebras with metacyclic quasiregular group

  • 23 Accesses

  • 1 Citations

Abstract

We present a classification of finite milpotent algebras with metacyclic quasiregular group.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. Kaloujnine, “Zum Problem der Klassifikation der endlichen metabelschenp-Gruppen,”Wiss. Z. Humboldt-Univ. Berlin. Math. Natunviss. R.,4, 331–338 (1955).

  2. 2.

    A. A. Bovdi, “Unitary subgroup and congruence-subgroup of the multiplicative group of an integer-valued group ring,”Dokl. Akad. Nauk SSSR,289, 1041–1044 (1985).

  3. 3.

    N. Eggert, “Quasiregular groups of finite commutative nilpotent algebras,”Pacif. J. Math.,36, 631–634 (1971).

  4. 4.

    J. C. Ault and J. F. Watters, “Circle groups of nilpotent rings,”Amer. Math. Mon.,80, 48–52 (1973).

  5. 5.

    I. Fischer and K. Eldridge, “Artinian rings with a cyclic quasiregular group,”Duke Math. J.,36, 43–47 (1969).

  6. 6.

    R. Kruse and D. Price, “On the subring structure of the finite nilpotent rings,”Pacif. J. Math.,31, 103–117 (1969).

Download references

Author information

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 10, pp. 1426–1431, October, 1995.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorlov, V.O. Finite nilpotent algebras with metacyclic quasiregular group. Ukr Math J 47, 1632–1639 (1995). https://doi.org/10.1007/BF01060164

Download citation

Keywords

  • Nilpotent Algebra
  • Quasiregular Group