Journal of Pharmacokinetics and Biopharmaceutics

, Volume 8, Issue 6, pp 553–571 | Cite as

Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-menten model: Routine clinical pharmacokinetic data

  • Lewis B. Sheiner
  • Stuart L. Beal


Individual pharmacokinetic parameters quantify the pharmacokinetics of an individual, while population pharmacokinetic parameters quantify population mean kinetics, interindividual variability, and residual intraindividual variability plus measurement error. Individual pharmacokinetics are estimated by fitting individual data to a pharmacokinetic model. Population pharmacokinetic parameters are estimated either by fitting all individual's data together as though there were no individual kinetic differences (the naive pooled data approach), or by fitting each individual's data separately, and then combining the individual parameter estimates (the two-stage approach). A third approach, NONMEM, takes a middle course between these, and avoids shortcomings of each of them. A data set consisting of 124 steady-state phenytoin concentration-dosage pairs from 49 patients, obtained in the routine course of their therapy, was analyzed by each method. The resulting population parameter estimates differ considerably (population mean Km, for example, is estimated as 1.57, 5.36, and 4.44 μg/ml by the naive pooled data, two-stage, and NONMEM approaches, respectively). Simulations of the data were analyzed to investigate these differences. The simulations indicate that the pooled data approach fails to estimate variabilities and produces imprecise estimates of mean kinetics. The two-stage appproach produces good estimates of mean kinetics, but biased and imprecise estimates of interindividual variability. NONMEM produces accurate and precise estimates of all parameters, and also reasonable confidence intervals for them. This performance is exactly what is expected from theoretical considerations and provides empirical support for the use of NONMEM when estimating population pharmacokinetics from routine type patient data.

Key words

nonlinear regression population pharmacokinetics Michaelis-Menten model phenytoin statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Ludden, J. P. Allen, W. A. Valutzky, A. V. Vicuna, J. M. Nappi, S. F. Hoffman, J. E. Wallace, P. Lalka, and J. L. McNay. Individualization of phenytoin dosage regimes.Clin. Pharmacol. Ther. 21:287–295 (1977).PubMedGoogle Scholar
  2. 2.
    C. M. Metzler, G. L. Elfring, and A. J. McEwen.A Users Manual for Nonlin and Associated Programs, Upjohn Co., Kalamazoo, Mich. 1974.Google Scholar
  3. 3.
    W. J. Dixon and F. J. Massey.Introduction to Statistical Analysis, McGraw-Hill, New York, 1969, pp. 101–104.Google Scholar
  4. 4.
    L. B. Sheiner, B. Rosenberg, and K. L. Melmon. Modelling of individual pharmacokinetics for computer-aided drug dosage.Comp. Biomed. Res. 5:441–459 (1972).CrossRefGoogle Scholar
  5. 5.
    L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data.J. Pharmacokin. Biopharm. 5:445–479 (1977).CrossRefGoogle Scholar
  6. 6.
    S. L. Beal. Adaptive M estimation with independent not identically distributed data. Ph.D. dissertation, Univ. of California, Los Angeles, 1974.Google Scholar
  7. 7.
    S. L. Beal and L. B. Sheiner.NONMEM Users Guide—Part 1, Users Basic Guide, Division of Clinical Pharmacology, University of California, San Francisco, 1979.Google Scholar
  8. 8.
    S. Vozeh, A. Koelz, E. Martin, H. Magin, G. Scollo-Lovizzari, and F. Follath. Predictability of phenytoin serum levels by nomograms and clinicians.Eur. Neurol., in press.Google Scholar
  9. 9.
    A. Richens. A study of the pharmacokinetics of phenytoin (diphenyl-hydantoin) in epileptic patients, and the development of a nomogram for making dose increments.Epilepsia 16:627–646 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Richens and A. Dunlop. Serum phenytoin levels in management of epilepsy.Lancet II:247–248 (1975).CrossRefGoogle Scholar
  11. 11.
    L. Lund and G. Alvan. Phenytoin dosage nomogram (letter).Lancet II:1305 (1975).CrossRefGoogle Scholar
  12. 12.
    J. Gordo, J. Schaublin, and P. Spring. Microdetermination of plasma diphenylhydantoin by gas-liquid chromatography.J. Chromatogr. 143:171–181 (1977).CrossRefGoogle Scholar
  13. 13.
    G. Box and M. Muller. A note on the generation of random normal deviates.Ann. Math. Statist. 29:610–611 (1958).CrossRefGoogle Scholar
  14. 14.
    P. Lewis, A. Goodman, and J. Miller. A pseudo random number generator for the system 360.IBM Systems J. 8:136–146 (1969).CrossRefGoogle Scholar
  15. 15.
    W. T. Dixon and F. J. Massey.Introduction to Statistical Analysis, McGraw-Hill, New York, 1969, p. 501.Google Scholar
  16. 16.
    L. B. Sheiner, S. Beal, B. Rosenberg, and V. V. Marathe. Forecasting individual pharmacokinetics.Clin. Pharmacol Ther. 26:294–305 (1979).PubMedGoogle Scholar
  17. 17.
    J. H. Matis and H. D. Tolley. On the stochastic modeling of tracer kinetics.Fed. Proc. 39:104–109 (1980).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Lewis B. Sheiner
    • 1
  • Stuart L. Beal
    • 1
  1. 1.Departments of Laboratory Medicine, and Division of Clinical Pharmacoiogy, Department of MedicineUniversity of CaliforniaSan Francisco

Personalised recommendations