Journal of Pharmacokinetics and Biopharmaceutics

, Volume 5, Issue 6, pp 579–596 | Cite as

The clinical pharmacokinetics of phenytoin

  • Ernst Martin
  • Thomas N. Tozer
  • Lewis B. Sheiner
  • Sidney Riegelman
Article

Abstract

Procedures for estimating the variability in dosage requirements of phenytoin to achieve steadystate plasma concentrations of 10–20 mg/liter and for estimating the plasma concentrations produced on a fixed dose are given. Further, a method is proposed for estimating the dosage required to achieve a desired steady-state plasma phenytoin concentration when a steady-state value on a known daily dose has been measured, A method is also described for estimating dosage requirements when two or more plasma concentrations have been measured. These methods are derived from data obtained on administering phenytoin in four to five different dosage regimens until steady state was achieved in each of nine volunteers. The drug was administered orally as a suspension every 8 hr, starting with about 100mg/day. The daily dose was increased in steps, and maintained at each daily dose rate for 6–14 days, or longer. Blood samples were drawn 4 and 8 hr after the last dose on 2 successive days at the end of each step and analyzed for phenytoin concentration. The average of these values was used to estimate the steady-state plasma concentration, Cpss. For each subject the Cpss values were fitted to a rearranged Michaelis-Menten equation Cpss =KmR/(Vm-R). In this equation R is the dosing rate, Vm is the maximum rate of metabolism, and Km is a constant equal to the plasma concentration at which the metabolism rate is one-half maximum. The average values found for Vm and Km were 10.3 mg/kg/day and 11.54 mg/liter, respectively. The individual values of Vm and Km appear to be constant over time, but there is considerable interindividual variability: coefficients of variation are 25% and 50%, respectively.

Key words

phenytoin steady state dosage requirements dosage adjustment capacitylimited elimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bochner, W. D. Hooper, J. J. Tryer, and M. J. Eadie. Effect of dosage increments on blood phenytoin concentrations.J. Neurol. Neurosurg. Psychiat. 35:873–876 (1972).PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    L. G. Borofsky, S. Levis, H. Kutt, and M. Roqinsky. Diphenylhydantoin: Efficacy, toxicity, and dose-serum level relationships in children.J. Pediat. 81:995–1002 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    G. E. Mawer, P. W. Müllen, and M. Rogers. Phenytoin dose adjustment in epileptic patients.Br. J. Clin. Pharmacol. 1:163–168 (1974).PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    A. Richens and A. Dunlop. Serum phenytoin levels in management of epilepsy.Lancet 2:247–248 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    A. J. Atkinson and J. M. Shaw. Pharmacokinetics study of a patient with diphenylhydantoin toxicity.Clin. Pharmacol. Ther. 14:521–528 (1973).PubMedGoogle Scholar
  6. 6.
    N. Gerber, R. Lynn, and J. Oates. Acute intoxication with 5,5-diphenylhydantoin (DilantinR) associated with impairment of biotransformation.Ann. Intern. Med. 77:765–771 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    G. W. Houghton and A. Richens. Rate of elimination of tracer doses of phenytoin at different steady-state serum phenytoin concentrations in epileptic patients.Br. J. Clin. Pharmacol. 1:155–161 (1974).PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    J. Koch-Weser. The serum level approach to individualization of drug dosage.Eur. J. Clin. Pharmacol. 9:1–8 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    H. Kutt, R. Brennan, H. Dehejia, and K. Verebely. Diphenylhydantoin intoxication.Am. Rev. Resp. Dis. 101:377–384 (1970).PubMedGoogle Scholar
  10. 10.
    J. T. Bigger, D, H. Schmidt, and H. Kutt. Relationship between the plasma level of diphenylhydantoin sodium and its cardiac antiarrhythmic effects.Circulation 36:363–374 (1968).CrossRefGoogle Scholar
  11. 11.
    F. Buchthal and M. A. Lennox-Buchthal. Diphenyhydantoin: Relation of anticonvulsant effect to concentration in serum. In D. M. Woodbury (ed.),Anticonvulsant Drugs, Raven Press, New York, 1972.Google Scholar
  12. 12.
    T. H. Doenna, G. De Crousaz, I. Magrini, P. Bechtel, and J. L. Schelling. Plasma concentrations of diphenylhydantoin in the epileptic: Its interest for the clinician.Schweiz. Med. Wschr. 105:936–940 (1975).Google Scholar
  13. 13.
    K. P. Dowson and A. Jemieson. Value of blood phenytoin estimation in management of childhood elipepsy.Arch. Dis. Child. 46:386–388 (1971).CrossRefGoogle Scholar
  14. 14.
    G. W. Houghton, A. Richens, P. A. Toseland, S. Davidson, and M. A. Falconer. Brain concentrations of phenytoin, phenobarbitone and primidone in epileptic patients.Eur. J. Clin. Pharmacol. 9:73–78 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Kutt, W. Winters, R. Kokenge, and F. McDowell. Diphenylhydantoin metabolism, blood levels and toxicity.Arch. Neurol 11:642–648 (1964).PubMedCrossRefGoogle Scholar
  16. 16.
    L. Lund. Anticonvulsant effects of diphenylhydantoin relative to plasma levels: A prospective 3 year study in ambulant patients with generalized epileptic seizures.Arch. Nerol. 31:289–294 (1974).CrossRefGoogle Scholar
  17. 17.
    J. M. Hansen, M. Kristensen, L. Skovsted, and L. K. Christensen. Dicoumarol-induced diphenylhydantoin intoxication.Lancet 2:265–266 (1966).PubMedCrossRefGoogle Scholar
  18. 18.
    A. J. Glazko, T. Chang, J. Baukema, W. A. Dill, J. R. Goulet, and R. A. Buckanan. Metabolic disposition of diphenylhydantoin in normal human subjects following intravenous dministration.Clin. Pharmacol. Ther. 10:498–504 (1969).PubMedGoogle Scholar
  19. 19.
    B. J. Wilder, E. E. Serrano, E. Ramsey, and R. A. Bachanan. A method for shifting from oral to intramuscular diphenylhydantoin administration.Clin. Pharmacol. Ther. 16:507–513 (1974).PubMedGoogle Scholar
  20. 20.
    D. S. Adler, E. Martin, J. G. Gambertoglio, T. N. Tozer, and J. P. Spire. Hemodialysis of phenytoin in a uremic patient.Clin. Pharmacol. Ther. 18:65–69 (1975).PubMedGoogle Scholar
  21. 21.
    V. P. Shah, S. M. Wallace, and S. Riegelman. A microultrafiltration technique for drug-protein binding determination in plasma.J. Pharm. Sci. 63:1364–1366 (1974).PubMedCrossRefGoogle Scholar
  22. 22.
    L. B. Sheiner, B. Rosenberg, and K. L. Melmon. Modelling of individual pharmacokinetics for computer-aided drug dosage.Comp. Biomed. Res. 5:441–459 (1972).CrossRefGoogle Scholar
  23. 23.
    L. B. Sheiner, H. Halkin, C. Peck, B. Rosenberg, and K. L. Melmon. Improved computer-assisted digoxin therapy.Ann. Intern. Med. 82:619–627 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Ehrnebo and I. Odar-Cederlof. Binding of amobarbital, pentobarbital and diphenyShydantoin to blood cells and plasma proteins in healthy volunteers and uraemic patients.Eur. J. Clin. Pharmacol. 8:445–453 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    W. D. Hooper, F. Bochner, M. J. Eadie, and J. H. Tyrer. Plasma protein binding of diphenylhydantoin: Effects of sex hormones, renal and hepatic disease.Clin. Pharm. Ther. 15:276–282 (1973).Google Scholar
  26. 26.
    I. Odar-Cederlof and O. Borga. Kinetics of diphenylhydantoin in uremic patients: Consequences of decreased protein binding.Eur. J. Clin. Pharmacol. 7:3137 (1974).CrossRefGoogle Scholar
  27. 27.
    M. M. Reidenberg, I. Odar-Cederlof, C. von Bahr, O. Borga, and F. Sjoqvist. Protein binding of diphenylhydantoin and desmethylimipramine in plasma from patients with poor renal function.New Engl. J. Med. 285:264–267 (1971).PubMedCrossRefGoogle Scholar
  28. 28.
    D. W. Shoenman and D. L. Azarnoff. The alteration of plasma proteins in uremias as reflected in their ability to bind digoxin and diphenylhydantoin in man.Pharmacology 7:169–177 (1972).CrossRefGoogle Scholar
  29. 29.
    R. Gugler, C. V. Manion, and D. L. Azarnoff. Phenytoin: Pharmacokinetics and bioavailability.Clin. Pharmacol. Ther. 19:135–142 (1976).PubMedGoogle Scholar
  30. 30.
    J. M. Hansen, M. Kristensen, L. Skovstead, and L. K. Christensen. Dicoumarol-induced diphenylhydantoin intoxication.Lancet 2:265–266 (1966).PubMedCrossRefGoogle Scholar
  31. 31.
    B. Lumholtz, K. Siersbaek-Nielsen, L. Skovsted, J. Kampmann, and J. M. Hansen. Sulfamethizole-induced inhibition of diphenylhydantoin, tolbutamide and warfarin metabolism.Clin. Pharmacol. Ther. 17:731–734 (1975).PubMedGoogle Scholar
  32. 32.
    P. L. Morselli, M. Rizzo, and S. Garattini. Interaction between phenobarbital and diphenylhydantoin in animals and epileptic patients.Ann. N.Y. Acad. Sci. 179:88–107 (1971).PubMedCrossRefGoogle Scholar
  33. 33.
    G. E. Solomon, M. W. Hilgartner, and H. Kutt. Coagulation defects caused by diphenylhydantoin.Neurology 22:1165–1171 (1972).PubMedCrossRefGoogle Scholar
  34. 34.
    T. F. Blaschke, P. J. Meffin, K. L. Melmon, and M. Rowland. Influence of acute viral hepatitis on phenytoin kinetics and protein binding.Clin. Pharmacol. Ther. 17:685–691 (1975).PubMedGoogle Scholar
  35. 35.
    H. Kutt, W. Winters, R. Scherman, and F. McDowell. Diphenylhydantoin and phenobarbital toxicity: The role of liver disease.Arch. Neurol. (Chicago) 11:649–656 (1964).CrossRefGoogle Scholar
  36. 36.
    M. Sparberg. Lesser known complications of diphenylhydantoin therapy.Ann. Intern. Med. 59:914–930 (1963).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Ernst Martin
    • 1
  • Thomas N. Tozer
    • 2
  • Lewis B. Sheiner
    • 1
    • 3
  • Sidney Riegelman
    • 2
  1. 1.Division of Clinical Pharmacology, Department of Medicine, School of MedicineUniversity of CaliforniaSan Francisco
  2. 2.Department of Pharmacy, School of PharmacyUniversity of CaliforniaSan Francisco
  3. 3.Department of Laboratory Medicine, School of MedicineUniversity of CaliforniaSan Francisco

Personalised recommendations