Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

Reducibility of nonlinear almost periodic systems of difference equations on an infinite-dimensional torus

  • 21 Accesses


We establish sufficient conditions for the reducibility of a nonlinear system of difference equationsx(t+1)=x(t)+ω+P(x(t),t+λ to a system y(t+1)= y(t)+ω, wherex, ω, λ∈ m and the infinite-dimensional vector function P(x(t),t) is 2πp-periodic inx i i=1,2,...) and almost periodic int with a frequency basisα.

This is a preview of subscription content, log in to check access.


  1. 1.

    N. N. Bogolyubov, Yu. A. Mitropol'skii, and A. M. Samoilenko,Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).

  2. 2.

    A. M. Samoilenko and Yu. V. Teplinskii,On the Reducibility of Differential Systems in the Space of Bounded Number Sequences [in Russian], Preprint No. 89.44, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1989).

  3. 3.

    M. G. Filippov, “On the reducibility of systems of differential equations with almost periodic perturbations given on an infinite-dimensional torus,”Dokl. Akad. Nauk Ukr.SSR, SerA, No. 3, 30–33 (1990).

  4. 4.

    D. I. Martynyuk and N. A. Perestyuk, “On the reducibility of difference equations on a torus,”Vych. Prikl. Mat.,26, 42–48 (1975).

  5. 5.

    Yu. A. Mitropol'skii, A. M. Samoilenko, and D. I. Martynyuk,Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients [in Russian], Naukova Dumka, Kiev (1984);English translation: Kluwer AP, Dordrecht-Boston-London (1993).

Download references

Author information

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 46, No. 9, pp. 1216–1223, September, 1994.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Samoilenko, A.M., Martynyuk, D.I. & Perestyuk, N.A. Reducibility of nonlinear almost periodic systems of difference equations on an infinite-dimensional torus. Ukr Math J 46, 1336–1344 (1994). https://doi.org/10.1007/BF01059424

Download citation


  • Nonlinear System
  • Difference Equation
  • Vector Function
  • Periodic System