Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical study of the influence of the circadian rhythm of plasma protein binding on cisplatin area under the curve

Abstract

A mathematical model for area under the curve (AUC)determination is proposed taking into account the circadian variation of cisplatin protein binding. The main theoretical result obtained with the model is that early morning drug administration (2–4 AM) promotes the highest AUC.The model predicts a maximum AUCvariation, due to the binding variation, ranging between 2.4 and 15%. The minimum of AUCbetween 2.45 and 3.30 PM is in agreement with the minimum nephrotoxicity observed when cisplatin is injected in the afternoon.The model can be applied to other drugs that are irreversively bound to proteins or irreversively bound to other plasma components if the binding rate depends on the time of day. The variation intensity of AUC wasdemonstrated to depend on drug characteristics, but can never be higher than the circadian variation of the protein binding rate.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. P. Tillement. Fixation des médicaments sur les protéines plasmatiques. In J. P. Giroud, G. Mathe, and G. Meyniel (eds.),Pharmacologie clinique. Base de la thérapeutique 1, Expansion Scientifique, Paris, 1978, pp. 151–164.

  2. 2.

    M. Rowland. Plasma protein binding and therapeutic drug monitoring.Ther. Drug Monitor,2:29–37 (1980).

  3. 3.

    R. Levy and D. Shand (eds.). Clinical implications of drug-protein binding.Clin. Pharmacokinet. 9(Suppl. 1) (1984).

  4. 4.

    A. W. Prestayko, S. T. Crooke, and S. K. Carter (eds.).Cisplatin: Current Status and New Developments, Academic Press, New York, 1980.

  5. 5.

    M. Rozencweig, R. Abele, D. D. Von Hoff, and F. M. Muggia. Cisplatin: Impact of new anticancer agent on current therapeutic strategies.Anticancer Res. 1:199–204 (1981).

  6. 6.

    M. W. Weiner and C. Jacobs. Mechanism of cisplatin nephrotoxicity.Fed. Proc. 42:2974–2978 (1983).

  7. 7.

    E. T. Renbourn. Variation diurnal and over longer periods of time, in blood hemoglobin, hematocrit, plasma protein, erythrocyte sedimentation rate and blood chloride.J. Hyg. (Lond.) 45:455 (1947).

  8. 8.

    A. Reinberg, E. Schuller, and N. Delasnerie. Rythmes circadiens et circannuels des leucocytes, protéines totales, immunoglobulines A, G et M.Nouv. Presse Med. 6:3819–3823 (1977).

  9. 9.

    D. Desir, E. Van Cauter, V. S. Fang, E. Martino, C. Jadot, J. P. Spire, P. Noel, S. Refetoff, G. Copinschi and J. Goldstein. Effect of “jet lag” on hormonal pattern. 1. Procedures, variations in total plasma proteins, and disruption of adrenocorticotropin cortisol periodicity.J. Clin. Endocrinol. Metab. 52:628–641 (1981).

  10. 10.

    B. Hecquet, J. Meynadier, J. Bonneterre, L. Adenis, and A. Demaille. Time dependency in plasmatic protein binding of cis platinum.Cancer Treat. Rep. 69:79–83 (1985).

  11. 11.

    B. Hecquet, J. Meynadier, J. Bonneterre and L. Adenis. Circadian rhythm in cisplatin binding on plasma proteins. InAnnual Review of Chronopharmacology, Pergamon Press, Oxford, 1984, pp. 115–118.

  12. 12.

    A. J. Repta and D. F. Long. Reactions of cis-platin with human plasma and plasma fractions. In A. W. Prestayko, S. T. Crooke, and S. K. Carter (eds.).Cisplatin: Current Status and New Developments, Academic Press, New York, 1979, pp. 285–304.

  13. 13.

    J. J. Gullo, C. L. Litterst, P. J. Maguire, B. I. Sikic, D. F. Hoth and P. V. Woolley. Pharmacokinetics and protein binding of cis-dichlorodiammine platinum (II) administered as a one hour or as a twenty hour infusion.Cancer Chemother. Pharmacol. 5:21–26 (1980).

  14. 14.

    K. J. Himmelstein, T. F. Patton, R. J. Belt, S. Taylor, A. J. Repta, and L. A. Sternson. Clinical kinetics of intact cisplatin and some related species.Clin. Pharmacol. Ther. 29:658–664 (1981).

  15. 15.

    W. J. M. Hrushesky, R. Borch, and F. Levi. Circadian time dependence of cisplatinum urinary kinetics. Clin. Pharmacol. Ther.32:330–339 (1982).

  16. 16.

    F. Levi, W. J. M. Hrushesky, R. F. Borch, M. E. Pleasants, B. J. Kennedy and F. Halberg. Cisplatin urinary pharmacokinetics and nephrotoxicity: A common circadian mechanism.Cancer Treat. Rep. 66:1933–1938 (1982).

  17. 17.

    W. J. M. Hrushesky, F. A. Levi, F. Halberg, and B. J. Kennedy. Circadian stage dependence of cis-diamminedichloroplatinum lethal toxicity in rats.Cancer Res. 42:945–949 (1982).

  18. 18.

    F. A. Levi, W. J. M. Hrushesky, C. H. Blomquist, D. J. Lakatua, E. Haus, F. Halberg, and B. J. Kennedy. Reduction of cis-diamminedichloroplatinum nephrotoxicity in rats by optimal circadian drug timing.Cancer Res. 42:950–955 (1982).

  19. 19.

    F. A. Levi, W. J. M. Hrushesky, F. Halberg, T. R. Langevin, E. Haus, and B. J. Kennedy. Lethal nephrotoxicity and hematologic toxicity of cis-diamminedichloroplatinum ameliorated by optimal circadian timing and hydration.Eur. J. Cancer Clin. Oncol. 18:471–477 (1982).

Download references

Author information

Correspondence to Bernard Hecquet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hecquet, B., Sucche, M. Theoretical study of the influence of the circadian rhythm of plasma protein binding on cisplatin area under the curve. Journal of Pharmacokinetics and Biopharmaceutics 14, 79–93 (1986). https://doi.org/10.1007/BF01059285

Download citation

Key words

  • protein binding
  • cisplatin
  • circadian rhythm
  • AUC
  • model