Advertisement

Journal of Fusion Energy

, Volume 9, Issue 3, pp 269–272 | Cite as

Nuclear fusion from crack-generated particle acceleration

  • Frederick J. Mayer
  • John S. King
  • John R. Reitz
Article

Summary

In summary, the high-voltages necessary to accelerate deuterons to energies sufficient to produce modest numbers (104–105/sec) of d-d neutrons appears to be possible as a result of cracking or “fracture” of the metal lattice in the “cold” fusion experiments.

This mechanism requires neither “massive” electrons nor “exotic” nuclear reactions to explain the apparent “cold” fusion d-d neutron production results. Instead, it is possible that high voltage electrostatic fields, known to be associated with cracking, can reside across a crack gap long enough for the deuterons to be accelerated to sufficiently high energy to produce the d-d reactions. Interestingly, the electrostatic acceleration is quite similar to that of laboratory accelerators except for its submicron scale. Clearly, much work is still required to determine whether such a crack-generated acceleration mechanism, a “quasi-particle” mechanism, some combination of these, or some other, as yet unidentified mechanism is responsible for the nuclear effects seen in “cold” fusion experiments.

Keywords

High Voltage Nuclear Reaction Particle Acceleration Electrostatic Field Production Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fleischmann and S. Pons (1989).J. Electroanal. Chem.,261, 301.Google Scholar
  2. 2.
    S. E. Jones, E. P. Palmer, J. B. Czirr, D. L. Decker, G. L. Jensen, T. M. Thorne, and S. F. Taylor (1989).Nature 338, 737.Google Scholar
  3. 3.
    G. Heinicke, (1964).Tribochemistry (Akademie-Verlag, Berlin; V. A. Klyuev, A. G. Lipson, Yu. P. Toporov, A. D. Aliev, A. E. Chalykh, and B. V. Deryagin (1984).JETP Phys. Chem. M.,279, 1027.Google Scholar
  4. 4.
    J. T. Dickinson, E. E. Donaldson, and M. K. Park (1981).J. Mater. Sci.,16, 2897.Google Scholar
  5. 5.
    V. A. Klyuev, A. G. Lipson, Yu. P. Toporov, B. V. Deryagin, V. I. Lushchikov, A. V. Strelkov, and E. P. Shabalin, (1986).Sov. Tech. Phys. Lett. 12, 551.Google Scholar
  6. 6.
    D. L. Book (1981).Physics Vade Mecum (A. I. P., New York), p. 37.Google Scholar
  7. 7.
    W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, eds. (1968).Metal Hydrides (Academic Press, New York), p. 644.Google Scholar
  8. 8.
    H. C. Jamiesonet al., (1976).J. Less Common Metals,50, 85.Google Scholar
  9. 9.
    R. Ryan, M. Fowler, E. Garcia, H. Menlove, M. Miller, A. Mayer, J. Wilhelmy, C. Orth, S. Schmidt, R. Mills, D. Moore, and J. T. Dickinson. Abstracts Selected for Poster Sessions, Workshop on Cold Fusion Phenomena.Google Scholar
  10. 10.
    H. O. Menlove, M. M. Fowler, E. Garcia, A. Mayer, M. C. Miller, R. R. Ryan, and S. E. Jones. Agenda-Workshop on Cold Fusion Phenomena.Google Scholar
  11. 11.
    R. Ryan (private communication).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Frederick J. Mayer
    • 1
  • John S. King
    • 2
  • John R. Reitz
    • 3
  1. 1.FJM AssociatesAnn Arbor
  2. 2.Department of Nuclear EngineeringUniversity of MichiganAnn Arbor
  3. 3.Ann Arbor

Personalised recommendations