Ukrainian Mathematical Journal

, Volume 43, Issue 6, pp 734–743 | Cite as

Generalized killing tensors of arbitrary rank and order

  • A. G. Nikitin


We define Killing tensors and conformal Killing tensors of arbitrary rank and order which generalize in a natural way the notion of a Killing vector. We explicitly derive the corresponding tensors for a flat de Sitter space of dimension p+q=m,m≤ 4, which permits us to calculate complete sets of symmetry operators of arbitrary order n for a scalar wave equation with m independent parameters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    V. N. Shapovalov and G. G. Ékle, Algebraic Properties of the Dirac Equation [in Russian], Kalm. Univ., Élista (1972).Google Scholar
  3. 3.
    W. Miller, Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).Google Scholar
  4. 4.
    E. L. Kalnins, W. Miller, Jr., and G. C. Williams, “Matrix operator symmetries of the Dirac equation and separation of variables,” J. Math. Phys.,27, No. 7, 1893–1900 (1986).Google Scholar
  5. 5.
    V. I. Fushchich and A. G. Nikitin, Symmetry of the Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1990).Google Scholar
  6. 6.
    W. Killing, “Über die grundlagen der geometrie,” J. Reine Angew. Math.,109, 121–186 (1892).Google Scholar
  7. 7.
    N. Kh. Ibragimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  8. 8.
    M. Walker and R. Penrose, “On quadratic first integrals of the geodesic equation for type 22 spacetimes,” Commun. Math. Phys.,18, No. 4, 265–274 (1970).Google Scholar
  9. 9.
    A. G. Nikitin and A. I. Prilipko, “Generalized Killing tensors and the symmetry of the Klein-Gordon-Fochs equation,” Preprint, Akad. Nauk UkrSSR, Inst. Matem., 90.26, 2–60 Kiev (1990).Google Scholar
  10. 10.
    G. H. Katrin and T. Levin, “Quadratic first integrals of the geodesies in spaces of constant curvature,” Tensor,16, No. 1, 97–103 (1965).Google Scholar
  11. 11.
    V. G. Bagrov, B. F. Samsonov, A. V. Shapovalov, and I. V. Shirokov, “Commutative subalgebras of symmetry operators of the wave equation containing second-order operator, and separation of variables,” Preprint, Sib. Br., Akad. Nauk SSSR, Tomsk. Nauch. Tsentr., 90.27, 3–60, Tomsk (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. G. Nikitin
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations