Advertisement

Studia Logica

, Volume 54, Issue 1, pp 33–60 | Cite as

On Jaśkowski's discussive logics

  • Newton C. A. da Costa
  • Francisco A. Doria
Article

Abstract

We expose the main ideas, concepts and results about Jaśkowski's discussive logic, and apply that logic to the concept of pragmatic truth and to the Dalla Chiara-di Francia view of the foundations of physics.

Keywords

Main Idea Mathematical Logic Computational Linguistic Pragmatic Truth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arruda, A. I., 1980, ‘A survey of paraconsistent logic’, in A. I. Arruda, N. C. A. da Costa and R. Chuaqui (eds.),Mathematical Logic in Latin America, North-Holland, 1 – 41.Google Scholar
  2. Arruda, A. I., 1989, ‘Aspects of the historical development of paraconsistent logic’, in G. Priest, R. Routley and J. Norman (eds.),Paraconsistent Logic, Philosophia Verlag, 99 – 130.Google Scholar
  3. Church, A., 1956,Introduction to Mathematical Logic, Princeton University Press.Google Scholar
  4. da Costa, N. C. A., 1975, ‘Remarks on Jaśkowski's discussive logic’,Rep. Math. Logic 4, 7–16.Google Scholar
  5. da Costa, N. C. A., 1989a, ‘Logic and pragmatic truth’, in J. E. Fenstad et al. (eds.),Logic, Methodology and Philosophy of Science VIII, Elsevier, 247 – 261.Google Scholar
  6. da Costa, N. C. A., 1989b, ‘Logcis that are both paraconsistent and paracomplete’,Atti Acad. Lincei Rend. Fis. 83 (8), 29–32.Google Scholar
  7. da Costa, N. C. A. andR. Chuaqui, 1988, ‘On Suppes' Set-Theoretic Predicates’,Erkenntnis 29, 95–112.Google Scholar
  8. da Costa, N. C. A. andR. Chuaqui, 1990, ‘The logic of pragmatic truth’, to appear.Google Scholar
  9. da Costa, N. C. A. andF. A. Doria, 1990, ‘Jaśkowski's logic and the foundations of physics’, preprint.Google Scholar
  10. da Costa, N. C. A. andF. A. Doria, 1991, ‘Undecidability and Incompleteness in Classical Mechanics’,International Journal of Theoretical Physics 30, 1041–1073.Google Scholar
  11. da Costa, N. C. A. andF. A. Doria, 1992a, ‘Structures, Suppes Predicates and Boolean-Valued Models in Physics’, to appear in J. Hintikka (ed.),Festschrift in Honor of Prof. V. Smirnov on his 60th Birthday.Google Scholar
  12. da Costa, N. C. A. andF. A. Doria, 1992b, ‘Suppes Predicates for Classical Physics’, in J. Echeverría et al. (eds.),The Space of Mathematics Walter de Gruyter, Berlin-New York.Google Scholar
  13. da Costa, N. C. A. andF. A. Doria, 1992c, ‘On the incompleteness of axiomatized models for the empirical sciences’,Philosophica 50, 901–928.Google Scholar
  14. da Costa, N. C. A. andF. A. Doria, 19XX,Metamathematics of Physics, to appear.Google Scholar
  15. da Costa, N. C. A., F. A. Doria andJ. A. de Barros, 1990, ‘A Suppes Predicate for General Relativity and Set-Theoretically Generic Spacetimes’,International Journal of Theoretical Physics 29, 935–961.Google Scholar
  16. da Costa, N. C. A. andL. Dubikajtis, 1968, ‘Sur la logique discoursive de Jaśkowski’,Bull. Acad. Polonaise des Sciences 26, 551–557.Google Scholar
  17. da Costa, N. C. A. andL. Dubikajtis, 1977, ‘On Jaśkowski's discussive logic’, in A. I. Arruda, N. C. A. da Costa and R. Chuaqui (eds.),Non-Classical Logic, Model Theory and Computability, North-Holland, 37 – 56.Google Scholar
  18. da Costa, N. C. A. andD. Marconi, 1987, ‘An overview of paraconsistent logic in the 80s’,Monografias da Soc. Paranaense de Matemática 5.Google Scholar
  19. Dalla Chiara, M. L., andR. Giuntini, 1989, ‘Paraconsistent Quantum Logics’,Foundations of Physics 19, 891–904.Google Scholar
  20. Dalla Chiara, M. L. andG. Toraldo di Francia, 1981,Le Teorie Fisiche, Boringhieri.Google Scholar
  21. T. Furmanowski, T., 1975, ‘Remarks on discussive propositional calculus’,Studia Logica 34, 39–43.Google Scholar
  22. L. Henkin andR. Montague, 1956, ‘On the definition of formal deduction’,Journal of Symbolic Logic 21, 129–136.Google Scholar
  23. Hughes, G. H. andM. J. Cresswell, 1968,An Introduction to Modal Logic, Methuen.Google Scholar
  24. Jaśkowski, S., 1948, ‘Rachunek zdań dla systemów dedukcyjnych sprzecznych’,Studia Soc. Sci. Torunensis 5, 55–77.Google Scholar
  25. Jaśkowski, S., 1949, ‘O koniunkcji dyskusyjnej w rachunku zdań dla systemów dedukcyjnych sprzecznych’,Studia Soc. Sci. Torunensis 8, 171–172.Google Scholar
  26. Jaśkowski, S., 1969, ‘Propositional calculus for contradictory deductive systems’,Studia Logica 24, 143–157.Google Scholar
  27. Kleene, S. C., 1967,Mathematical Logic, Wiley.Google Scholar
  28. Kotas, J., 1971, ‘On the algebra of classes of formulæ of Jaśkowski's discussive system’,Studia Logica 27, 81–91.Google Scholar
  29. Kotas, J., 1974, ‘The axiomatization of Jaśkowski's discussive system’,Studia Logica 28, 195–200.Google Scholar
  30. Kotas, J., 1975, ‘Discussive sentential calculus of Jaśkowski’,Studia Logica 24, 149–168.Google Scholar
  31. I. Mikenberg, N. C. A. da Costa andR. Chuaqui, 1986, ‘Pragmatic truth and approximation to truth’,Journal of Symbolic Logic 51, 201–221.Google Scholar
  32. G. R. Priest, R. Routley andJ. Norman (eds.), 1989,Paraconsistent Logic, Philosophia Verlag.Google Scholar
  33. Quine, W. v. O., 1950,Methods of Logic, Holt.Google Scholar
  34. Rescher, N. andR. Brandon, 1980,The Logic of Inconsistency, Blackwell.Google Scholar
  35. Shoenfield, J., 1967,Mathematical Logic, Addison-Wesley.Google Scholar
  36. Stewart, I., 1991, Deciding the undecidable,Nature 352, 664–665.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Newton C. A. da Costa
    • 1
  • Francisco A. Doria
    • 2
  1. 1.Research Group on Logic and Foundations Institute for Advanced StudiesUniversity of São PauloSão Paulo SPBrazil
  2. 2.Research Center on Math. Theories of Communication School of CommunicationsFed. Univ. at Rio de JaneiroRio RJBrazil

Personalised recommendations