Ukrainian Mathematical Journal

, Volume 38, Issue 2, pp 226–229 | Cite as

Irreducible representations of the group of infinite upper triangular matrices

  • V. L. Ostrovskii
Brief Communications


Irreducible Representation Triangular Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. H. Schäfer, Topological Vector Spaces, MacMillan, New York (1966).Google Scholar
  2. 2.
    A. A. Kirillov, “Unitary representations of nilpotent Lie groups,” Usp, Mat. Nauk,17, No. 4, 57–110 (1962).Google Scholar
  3. 3.
    V. L. Ostrovskii, “An analog of Nelson's theorem for nuclear nilpotent Lie algebras of currents,” in: Spectral Theory of Operators and Infinite-Dimensional Analysis [in Russian], Inst. Mat. Akad. Nauk UkrSSR, Kiev (1984), pp. 120–131.Google Scholar
  4. 4.
    A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag, Berlin (1972).Google Scholar
  5. 5.
    R. A. Minlos, “Generalized stochastic processes and their extensions to a measure,” Tr. Mosk. Mat. Obshch.,8, 411–497 (1959).Google Scholar
  6. 6.
    I. M. Gel'fand and N. Ya. Vilenkin, Applications of Harmonic Analysis, Academic Press, New York (1964).Google Scholar
  7. 7.
    A. Weil, L'integration dans les groupes topologiques et ses applications, Hermann, Paris (1951).Google Scholar
  8. 8.
    P. Richter, Unitary Representation of Countable Infinite Dimensional Lie Groups, Karl Marx Univ., Leipzig (1977).Google Scholar
  9. 9.
    Yu. S. Samoilenko, Spectral Theory of Families of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. L. Ostrovskii
    • 1
  1. 1.Kiev State UniversityUSSR

Personalised recommendations