Advertisement

Oxidation of Metals

, Volume 44, Issue 3–4, pp 429–452 | Cite as

Study of the initial oxidation of a Ni-20Cr alloy in the temperature range 550–830°C: Influence of mechanical deformation

  • J. F. Schmitt
  • N. Pacia
  • P. Pigeat
  • B. Weber
Article

Abstract

The influence of a uniaxial deformation on the initial oxidation rate of a Ni-20Cr polycrystalline alloy was studied between 550 and 830°C at 10−4 Pa of oxygen. At 550, 650, and 750°C, it was shown that the defects induced by a mechanical predeformation accelerate chromium-oxide formation on the alloy surface. This homogeneous oxide film is characteristic of the low-pressure-oxidation conditions. The film appeared on the sample after various incubation periods for the experimental conditions used. Microanalyses (scanning Auger microanalyses, composition profiles) reveal that growth of this oxide is heterogeneous and that it needs preferential orientations with the substrate. Furthermore, near chromium-oxide areas, an incorporation of oxygen at concentrations higher than the solubility was noted. At 830°C, this chromium oxide does not grow, because the superficial defects disappear by thermal annealing and the oxygen incorporation does not apparently depend on mechanical deformation.

Key Words

Ni-20Cr alloy low-pressure oxidation mechanical predeformation A.E.S. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Giggins and F. S. Pettit,Trans. Metall. Soc. AIME 245, 2495 (1969).Google Scholar
  2. 2.
    C. S. Giggins and F. S. Pettit,Trans. Metall. Soc. AIME 245, 2509, (1969).Google Scholar
  3. 3.
    B. Chattopadhyay and G. C. Wood,Oxid. Met. 2, 373 (1970).Google Scholar
  4. 4.
    G. C. Wood and B. Chattopadhyay,Corros. Sci. 10, 471 (1971).Google Scholar
  5. 5.
    P. Moulin, F. Armanet, G. Beranger, and P. Lacombe,Mem. Sci. Rev. Met. 143 (1977).Google Scholar
  6. 6.
    F. Armanet, Compiègne thesis, France, 1984.Google Scholar
  7. 7.
    G. C. Wood,Werkst. Korros. 6, 491 (1971).Google Scholar
  8. 8.
    G. Beranger, J. C. Colson, and F. Dabosi, Corrosion des matériaux à haute température, Ed. de Physique, 1987.Google Scholar
  9. 9.
    P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, New York, 1988).Google Scholar
  10. 10.
    C. H. Yang, G. Welsch, and T. E. Mitchell,J. Mater. Sci.,25, 1724 (1990).Google Scholar
  11. 11.
    H. Nagai,Mater. Sci. For. 43, 75 (1989).Google Scholar
  12. 12.
    D. N. Braski, P. D. Goodell, J. V. Cathcart, and R. H. Kane,Oxid. Met. 25, 29 (1986).Google Scholar
  13. 13.
    F. Armanet, P. Moulin, A. M. Huntz, A. Vejux, and G. Beranger,Mem. Sci. Rev. Met., 119 (1979).Google Scholar
  14. 14.
    F. Armanet, A. Vejux, G. Johannesson, and G. Beranger,Oxid. Met. 15, 3 (1981).Google Scholar
  15. 15.
    N. S. McIntyre, L. Kover, and T. C. Chan,J. Vac. Sci. Technol. 4, 1866 (1986).Google Scholar
  16. 16.
    N. S. McIntyre, T. C. Chan, and C. Chen,Oxid. Met. 33, 457 (1990).Google Scholar
  17. 17.
    S. P. Jeng, P. H. Holloway, C. D. Batich, and S. Hoffmann,J. Vac. Sci. Technol. 5, 650 (1987).Google Scholar
  18. 18.
    J. F. Schmitt, M. Bouhay, N. Pacia, P. Pigeat, and B. Weber,Rev. Sci. Inst. 61, 2666 (1990).Google Scholar
  19. 19.
    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber,Handbook of Auger Electron Spectroscopy (Physical Electronics Industries Inc, 1976).Google Scholar
  20. 20.
    J. F. Schmitt, Thesis (Nancy, France, 1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • J. F. Schmitt
    • 1
  • N. Pacia
    • 2
  • P. Pigeat
    • 2
  • B. Weber
    • 2
  1. 1.Laboratoire d'Energétique et de Mécanique Théorique et Appliquée (URA CNRS 875), INPLEcole Nationale Supérieure d'Electricité et de MécaniqueVandoeuvre CedexFrance
  2. 2.Laboratoire de Science et Génie des Surfaces (URA CNRS 1402), INPLEcole des MinesNancy CedexFrance

Personalised recommendations