Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The effect of surface oxide layers on the oxidative behaviour of imidazole-treated copper

  • 70 Accesses

  • 33 Citations

Abstract

Molecular structure and degradation mechanisms of undecylimidazole on copper oxide was studied using Fourier transform reflection-absorption spectroscopy. Undecylimidazole suggests the random amorphous orientation on a non-preoxidized surface, semicrystalline random orientation on copper preoxidized at 150° C for 30 min, and parallel orientation of the imidazole ring to the surface on copper preoxidized at 230° C for 30 min. The difference in morphology and orientation of undecylimidazole on oxide is due to the reactivity of the imidazole and the substrate surface, the rate of deposition of the imidazole, and the evaporation rate of solvent from the solution placed on the surface. The degradation is catalysed by two types of copper; in the film and substrate. The rate-determining step of the degradation is the reactivity of the carboxylic acid produced in the intermediate step of the degradation and the surface oxides. Molecular oxygen is necessary for the degradation which takes place initially from the outer layer of the film by the catalytic effect of the copper in the film.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. B. Cotton, Proceedings 2nd International Congress on Metallic Corrosion, NACE, New York (1963) p. 590.

  2. 2.

    I. Dugdale andJ. B. Cotton,Corros. Sci. 3 (1963) 69.

  3. 3.

    J. B. Cotton andI. R. Scholes,Brit. Corros. J. 2 (1967) 1.

  4. 4.

    R. Walker,Anti-Corrosion 17 (1970) 9.

  5. 5.

    F. Mansfeld, T. Smith andE. P. Perry,Corrosion 27 (1971) 289.

  6. 6.

    S. M. Mayanna andT. H. V. Setty,Corros. Sci. 15 (1975) 625.

  7. 7.

    G. W. Poling, INCRA Project No. 185, February (1979).

  8. 8.

    N. K. Patel, J. Franco andI. S. Patel,J. Ind. Chem. Soc. 54 (1977) 815.

  9. 9.

    G. N. Ekilik, V. P. Grigorev andV. V. Ekilik,Zashch. Met. 14 (1978) 357.

  10. 10.

    H. Ushiyama, Y. Kajiyama andT. Yoshioka,Jap. Kokai Tokkyo Koho 79 (1979) 72, 223.

  11. 11.

    A. Saito, H. Tashiro andS. Ano,ibid. 79 (1979) 148, 148.

  12. 12.

    Nippon Steel Corp.ibid. 81 (1981) 113, 381.

  13. 13.

    G. W. Poling,Corros. Sci. 10 (1970) 359.

  14. 14.

    N. Morito andW. Suetaka,Nippon Kinzoku Gakkaishi 35 (1971) 1165.

  15. 15.

    N. G. Klyuchnikov, V. F. Ushenina andI. A. Barabash,Uch. Zap. Mosk. Gos. Pedagog. Inst. 340 (1971) 278.

  16. 16.

    R. F. Roberts,J. Electron Spectrosc. Relat. Phenom. 4 (1974) 273.

  17. 17.

    D. Chadwick andT. Hashimi,Corros. Sci. 18 (1979) 457.

  18. 18.

    P. G. Fox, G. Lewis andP. J. Boden,ibid. 19 (1979) 457.

  19. 19.

    N. D. Hobbins andR. F. Roberts,Surf. Technol. 9 (1979) 235.

  20. 20.

    H. G. Tompkins andS. P. Sharma,Surf. Interface Anal. 4 (1982) 261.

  21. 21.

    H. G. Tompkins, D. L. Allara andG. A. Pasteur,ibid..

  22. 22.

    S. Yoshida andH. Ishida,J. Chem. Phys. 78 (1983) 6960.

  23. 23.

    Idem, J. Adhes. in press.

  24. 24.

    Idem, Surf. Sci. submitted.

  25. 25.

    Shikoku Chemicals Technical Report, “Glicoat T and L” (1979).

  26. 26.

    I. C. G. Ogle andG. W. Poling,Canad. Met. Q. 14 (1975) 37.

  27. 27.

    D. C. Frost, A. Ishitani andC. A. McDowell,Mol. Phys. 24 (1972) 861.

  28. 28.

    T. Robert andG. Obbergeld,Phys. Status Solidi (a) 14 (1972) 277.

  29. 29.

    F. Cotton andG. Wilkinson, “Advanced Inorganic Chemistry” (Wiley, New York, 1980) p. 801.

  30. 30.

    T. Notoyama andG. W. Poling,Corrosion 32 (1976) 216.

  31. 31.

    J. A. J. Jarvis andF. A. Well,Acta Crystallogr. 13 (1960) 1027.

  32. 32.

    F. Mansfeld andT. Smith,Corrosion 29 (1973) 105.

  33. 33.

    I. B. John,J. C. Eng. Data 7 (1962) 277.

  34. 34.

    Y. Morooka, Y. Marikawa andA. Ozaki,J. Catal. 7 (1967) 23.

  35. 35.

    R. S. Mann andK. C. Yao,Int. Eng. Chem. Prod. Res. Develop. 10 (1971) 25.

  36. 36.

    O. N. Kimkhai, V. V. Popovskii, G. K. Boreskov, T. V. Andrushkevich andT. B. Dneprovskaya,Kinet. Katal. 16 (1975) 96.

  37. 37.

    A. G. Anshits, V. D. Sokolovskii, G. K. Bareskov, A. A. Davydov, A. A. Budneva, V. I. Andeev andI. I. Zakharov,ibid. 16 (1975) 95.

  38. 38.

    Y. B. Gorochovatskii,Z. Chem. 16 (1976) 41.

  39. 39.

    D. N. Rundell, H. M. Saltsburg andW. D. Smith,Chem. Eng. Sci. 35 (1980) 1113.

  40. 40.

    A. G. Anshits, V. D. Sokolovski, G. K. Boreskov andA. A. Panydov,Kinet. Katal. 19 (1978) 366.

  41. 41.

    Idem, ibid. 19 (1978) 372.

  42. 42.

    M. Akimoto, H. Tsuneki andE. Echigoya,Nippon Kagaku Kaishi 805 (1978).

  43. 43.

    L. D. Krenzke, G. W. Keulks, A. V. Sklyarov, A. A. Firsova, M. Yu. Kutirev, L. Ya. Margolis andO. V. Krylov,J. Catal. 52 (1978) 418.

  44. 44.

    G. Kremenic,Simp. Iberoam, Catal. 7 (1980) 581.

  45. 45.

    D. J. Hucknall, “Selective Oxidation of Hydrocarbons” (Academic Press, New York, 1974) Ch. 3, p. 23.

  46. 46.

    C. Daniel andG. W. Keulks,J. Catal. 24 (1972) 529.

  47. 47.

    R. H. Hansen, C. A. Russell, T. Debenedictis, W. M. Martin andJ. V. Pascale,J. Polym. Sci. A-2 (1964) 587.

  48. 48.

    R. H. Hansen, T. Debenedicts andW. M. Martin,Polym. Eng. Sci. 5 (1965) 223.

  49. 49.

    M. G. Chan andD. L. Allara,ibid. 14 (1974) 12.

  50. 50.

    L. Reich andS. S. Stivola, “Autoxidation of Hydrocarbons and Polyolefins” (Dekker, New York, 1069) Ch. 4.

  51. 51.

    D. L. Allara andM. G. Chan,J. Polym. Sci. Polym. Chem. Ed. 14 (1976) 1857.

  52. 52.

    F. J. Boerio andL. Armogan,Appl. Spectrosc. 32 (1978) 509.

  53. 53.

    G. W. Poling,J. Electrochem. Soc. 116 (1969) 958.

  54. 54.

    H. Ishida, H. Sonoda, K. Nagasawawa andK. Ishida, “15th Applied Spectroscopy in Tokyo‘“, preprint (1979).

  55. 55.

    S. Yoshida andH. Ishida, to be published.

  56. 56.

    M. Goodgame andF. A. Cotton,J. Amer. Chem. Soc. 84 (1962) 1543.

  57. 57.

    C. W. Bunn,Trans. Faraday Soc. 35 (1939) 482.

  58. 58.

    S. Matsubara andT. Minagawa, Shikoku Chemicals Inc., private communication (1978).

  59. 59.

    S. A. Francis andA. H. Ellison,J. Opt. Soc. Amer. 49 (1959) 131.

  60. 60.

    R. G. Greenler,J. Chem. Phys. 44 (1966) 310.

  61. 61.

    J. A. Allen,Trans. Faraday Soc. 48 (1952) 273.

  62. 62.

    E. H. White andM. J. C. Harding,J. Amer. Chem. Soc. 84 (1964) 5686.

  63. 63.

    G. Rio andB. Serkin,J. Chem. Soc. Chem. Commun. (1975) 849.

  64. 64.

    H. S. Ryang andC. S. Foote,J. Amer. Chem. Soc. 101 (1979) 6693.

  65. 65.

    A. J. Melveger, L. R. Anderson, C. T. Ratcliffe andW. B. Fox,Appl. Spectrosc. 26 (1972) 381.

  66. 66.

    E. Ochiai,Inorg. Nucl. Chem. Lett. 9 (1973) 987.

  67. 67.

    T. B. Freedman, J. S. Lohr andT. M. Lohr,J. Amer. Chem. Soc. 98 (1976) 2809.

  68. 68.

    J. A. Larrabee, T. G. Spiro, N. S. Ferris, W. H. Woodruff, W. A. Maltese andM. S. Kerr,ibid. 99 (1977) 1979.

  69. 69.

    S. Salama andT. G. Sprio,ibid. 100 (1978) 1105.

  70. 70.

    P. Hemmerich andC. Sigwart,Experientia 19 (1963) 488.

  71. 71.

    C. Sigwart, P. Kroneck andP. Hemmerich,Helv. Chem. Acta 53 (1970) 177.

  72. 72.

    I. E. Wachs andR. J. Madix,Surf. Sci. 84 (1979) 375.

  73. 73.

    J. T. Yates andR. R. Cavanagh,J. Catal. 74 (1982) 97.

  74. 74.

    R. P. Groff andW. H. Manogue,ibid. 79 (1983) 462.

Download references

Author information

Correspondence to Hatsuo Ishida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoshida, S., Ishida, H. The effect of surface oxide layers on the oxidative behaviour of imidazole-treated copper. J Mater Sci 19, 2323–2335 (1984). https://doi.org/10.1007/BF01058109

Download citation

Keywords

  • Copper
  • Imidazole
  • Carboxylic Acid
  • Oxide Layer
  • Substrate Surface