Advertisement

Studia Logica

, Volume 53, Issue 4, pp 551–578 | Cite as

On the logic of event-causation Jaśkowski-style systems of causal logic

  • Max Urchs
Article
  • 46 Downloads

Abstract

Causality is a concept which is sometimes claimed to be easy to illustrate, but hard to explain. It is not quite clear whether the former part of this claim is as obvious as the latter one. I will not present any specific theory of causation. Our aim is much less ambitious; to investigate the formal counterparts of causal relations between events, i.e. to propose a formal framework which enables us to construct metamathematical counterparts of causal relations between singular events. This should be a good starting point to define formal counterparts for concepts like “causal law”, “causal explanation” and so on.

Keywords

Mathematical Logic Causal Relation Computational Linguistic Causal Explanation Specific Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Solomon Feferman, R. L. Vaught,The first order properties of products of algebraic structures Fundamenta Mathematica XLVII (1959), pp. 57–103.Google Scholar
  2. [2]
    Arend Heyting,Die formalen Regeln der intuitionistischen Mathematik, Sitzungsberichte der Preussischen Akademie der Wissenschaften. Mathematisch-Physikalische Klasse, (1930), pp. 57–71, 158–169.Google Scholar
  3. [3]
    Roman Ingarden,Über die kausale Struktur der realen Welt. Der Streit um die Existenz der Welt III,, Max-Niemeyer Verlag Tübingen 1974.Google Scholar
  4. [4]
    Stanisław Jaśkowski,Propositional Calculus for Contradictory Deductive Systems Studia Logica XXIV (1969), pp. 143–160.Google Scholar
  5. [5]
    Stanisław Jaśkowski,On the modal and causal functions in symbolic logic, Studia Philosophica, (1951), pp. 72–92.Google Scholar
  6. [6]
    G. E. Hughes, Max J. Cresswell,A Companion to Modal Logic,, Methuen London 1984.Google Scholar
  7. [7]
    Jan Łukasiewicz,Analiza i konstrukcja pojecia przyczyny, Przeglad Filozoficzny, (1906), 105–179.Google Scholar
  8. [8]
    Jan Łukasiewicz,On variable functors of propositional arguments Proceedings of the Royal Irish Academy vol54, Section A, No2 (January 1951) 24–35.Google Scholar
  9. [9]
    Ingolf Max, Zur Interpretierbarkeit vierstelliger Funktorvariablen als Kausalrelationen. Eine Kritik an Urchs' Einwänden.Wissenschaftliche Zeitschrift der Universität Halle XXXIX/2 (1990), pp. 53–61.Google Scholar
  10. [10]
    Donald Nute,Algebraic semantics for conditional logics Reports on Mathematical Logic 10 (1979), pp. 79–101.Google Scholar
  11. [11]
    August Pieczkowski: Undecidability of the homogeneous formulas of degree 3 of the predicate calculus,Studia Logica, vol. XXII (1968), pp. 7–15. bsGoogle Scholar
  12. [12]
    August Pieczkowski, Causal implications of JaśkowskiStudia Logica XXXIV/2 (1974), pp. 169–186.Google Scholar
  13. [13]
    Wolfgang Rautenberg,Klassische und Nichtklassische Aussagenlogik, Vieweg Braunschweig und Wiesbaden 1978.Google Scholar
  14. [14]
    Werner Stelzner,Effektive epistemische Logik, Dissertation B, Leipzig 1979.Google Scholar
  15. [15]
    Werner Stelzner,Epistemische Logik — Zur logischen Analyse von Akzeptationsformen, Akademie-Verlag Berlin 1984.Google Scholar
  16. [16]
    Max Urchs, Kripke-style semantics for Jaśkowski's system Qf Bull. Sec. of Logic 10/1 (1981), pp. 24–29.Google Scholar
  17. [17]
    Max Urchs,Systemy z implikacja przyczynowa wyznaczone poprzez logiki modalne, Dissertation, Toruń 1982.Google Scholar
  18. [18]
    Max Urchs,Kausallogik Habilitation, Leipzig 1987.Google Scholar
  19. [19]
    Max Urchs,Parakonsistenz in schwachen Modalkalkülen, Konstanzer Berichte zur Logik und Wissenschaftstheorie 11, (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Max Urchs
    • 1
  1. 1.Department of LogicUniversity of WrocławWrocław

Personalised recommendations