Advertisement

Ukrainian Mathematical Journal

, Volume 39, Issue 2, pp 162–170 | Cite as

Asymptotic decomposition of differential systems with a small parameter

  • Yu. A. Mitropol'skii
  • A. K. Lopatin
Article

Keywords

Small Parameter Differential System Asymptotic Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. K. Lopatin, “Asymptoting splitting of systems of nonlinear ordinary differential equations of high dimension,” Kibern. Vychisl. Tekh.,39, 39–45 (1978).Google Scholar
  2. 2.
    Yu. A. Mitropolsky, “Sur la décomposition asymptotique des systemes différentiels fondée sur des transformations de Lie,” in: Nonlinear Diff. Equations, Invariance, Stability, and Bifurcations, P. de Mottoni and L. Salvadori (eds.), Academic Press, New York (1981), pp. 283–326.Google Scholar
  3. 3.
    Yu. A. Mitropol'skii, “Development of the averaging method,” in: 9th Internation. Conf. on Nonlinear Oscillations, Analytic Methods of the Theory of Nonlinear Oscillations [in Russian], Vol. 1, Naukova Dumka, Kiev (1984), pp. 23–34.Google Scholar
  4. 4.
    Yu. A. Mitropol'skii and A. K. Lopatin,” Asymptotic decomposition of systems of nonlinear ordinary differential equations,” Ukr. Mat. Zh.,36, No. 1, 35–44 (1984).Google Scholar
  5. 5.
    A. K. Lopatin, “Asymptotic decomposition of systems of differential equations of high dimension and its applications,” in: 9th Internation. Conf. on Nonlinear Oscillations, Analytic Methods of the Theory of Nonlinear Oscillations [in Russian], Vol. 1, Naukova Dumka, Kiev (1984), pp. 235–242.Google Scholar
  6. 6.
    A. K. Lopatin, “Group-theoretic criteria for the decomposition of systems of ordinary differential equations with a small parameter into fast and slow variables,” in: Abstracts of 2nd All-Union Conf. “Lavrent'ev Lectures on Mathematics, Mechanics, and Physics” [in Russian], Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1985), pp. 145–147.Google Scholar
  7. 7.
    Yu. A. Mitropol'skii and A. K. Lopatin, “Group-theoretic aspects of asymptotic methods of nonlinear mechanics,” Mat. Fiz. Nelinein. Mekh., No. 5, 34–45 (1986).Google Scholar
  8. 8.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).Google Scholar
  9. 9.
    G. Hori, “Theory of general perturbations with unspecified canonical variables,” J. Jpn. Astron. Soc.,18, No. 4, 287–296 (1966).Google Scholar
  10. 10.
    G. Hori, “Lie transformations in nonhamiltonian systems,” in: Lecture Notes Summer Inst. in Orbital Mechanics, Univ. of Texas at Austin, May 1970, pp. 7–9.Google Scholar
  11. 11.
    A. Kamel, “A perturbation method in the theory of nonlinear oscillations,” Celest. Mech.,3, No. 1, 90–106 (1970).Google Scholar
  12. 12.
    A. Nayfeh, Perturbation Methods [Russian translation], Mir, Moscow (1976).Google Scholar
  13. 13.
    A. Povzner “Linear methods in problems of nonlinear differential equations with a small parameter,” Int. J. Nonlin. Mech.,9, No. 4, 279–323.Google Scholar
  14. 14.
    J. E. Campbell, Introductory Treatise on Lie's Theory of Finite Continuous Transformation Groups, Clarendon Press, Oxford (1903).Google Scholar
  15. 15.
    V. N. Bogaevskii and A. Ya. Povzner, “Linear methods in the nonlinear perturbation theory for differential equations,” in: 9th Internat. Conf. on Nonlinear Oscillations, Analytic Methdos of the Theory of Nonlinear Oscillations [in Russian], Vol. 1, Naukova Dumka, Kiev (1984), pp. 90–93.Google Scholar
  16. 16.
    V. N. Bogaevskii and A. Ya. Povzner, “Linear methods in nonlinear problems with a small parameter,” in: Lecture Notes Math. Asymptot. Anal. Surveys and New Trends, No. 895 (1983), pp. 441–448.Google Scholar
  17. 17.
    Yu. A. Mitropol'skii and A. K. Lopatin, “Vector fields, algebras, and groups generated by a system of ordinary differential equations, and their properties,” Preprint 85.73, Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1985).Google Scholar
  18. 18.
    Yu. A. Mitropol'skii and A. K. Lopatin, “Decomposition of systems of ordinary differential equations,” Preprint 85.74, Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Yu. A. Mitropol'skii
    • 1
  • A. K. Lopatin
    • 1
  1. 1.Mathematics InstituteAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations