Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Oscillations and global attractivity in models of hematopoiesis

  • 87 Accesses

  • 41 Citations

Abstract

LetP(t) denote the density of mature cells in blood circulation. Mackey and Glass (1977) have proposed the following equations:

$$\dot P(t) = \frac{{\beta _0 \theta ^n }}{{\theta ^n + [P(t - \tau )]^n }} - \gamma P(t)$$

and

$$\dot P(t) = \frac{{\beta _0 \theta ^n P(t - \tau )}}{{\theta ^n + [P(t - \tau )]^n }} - \gamma P(t)$$

as models of hematopoiesis. We obtain sufficient and also necessary and sufficient conditions for all positive solutions to oscillate about their respective positive steady states. We also obtain sufficient conditions for the positive equilibrium to be a global attractor.

This is a preview of subscription content, log in to check access.

References

  1. Glass, L., and Mackey, M. C. (1979). Pathological conditions resulting from instabilities in physiological control systems.Ann. N.Y. Acad. Sci. 316, 214–235.

  2. Gopalsamy, K., Kulenovic, M. R. S., and Ladas, G. (1989a). Time lags in a “food-limited” population modelAppl. Anal.31 (1988), 225–237.

  3. Gopalsamy, K., Kulenovic, M. R. S., and Ladas, G. (1989b). Oscillations and global attractivity in respiratory dynamics.Dynamics and Stability of Systems (in press).

  4. Kulenovic, M. R. S., Ladas, G., and Meimaridou, A. (1987). On oscillations of nonlinear delay equations.Q. Appl. Math. XLV 155–164.

  5. Mackey, M. C. (1978a). Dynamic haematological disorders in stem cell origin. InCellular Mechanisms of Reproduction and Aging, J. Vassileva-Popova (ed.), Plenum Press, New York, pp. 373–409.

  6. Mackey, M. C. (1978b). A unified hypothesis for the origin of aplastic anemia and periodic haematopoiesis.Blood 51, 941–956.

  7. Mackey, M. C. (1979). Periodic auto-immune hemolytic anemia; An induced dynamical disease.Bull. Math. Biol. 41, 829–834.

  8. Mackey, M. C. (1981). Some models in hemopoiesis: Predictions and problems. InBiomathematics and Cell Kinetics, M. Rotenberg (ed.), Elsevier/North-Holland, Amsterdam, pp. 23–38.

  9. Mackey, M. C., and an der Heiden, U. (1982). Dynamical diseases and bifurcations: Understanding functional disorders in physiological systems.Funk. Biol. Med. 156, 156–164.

  10. Mackey, M. C., and Glass, L. (1977). Oscillations and chaos in physiological control systems.Science 197, 287–289.

  11. Mackey, M. C., and Milton, J. G. (1979). Dynamical diseases.Ann. N.Y. Acad. Sci. 316, 214–235.

  12. Mallet-Paret, J., and Nussbaum, R. D. (1986). Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation.Ann. Mat. Pura Appl. 145, 33–128.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gopalsamy, K., Kulenović, M.R.S. & Ladas, G. Oscillations and global attractivity in models of hematopoiesis. J Dyn Diff Equat 2, 117–132 (1990). https://doi.org/10.1007/BF01057415

Download citation

Key words

  • oscillations
  • global attractivity
  • hematopoiesis

AMS 1980 Subject Classification

  • Primary-34K15
  • Secondary-92A15