Advertisement

Ukrainian Mathematical Journal

, Volume 39, Issue 3, pp 219–224 | Cite as

A nonlinear periodic optimal control problem for a system with a small parameter in part of the derivatives

  • M. G. Dmitriev
  • V. N. Yan'shin
Article
  • 25 Downloads

Keywords

Control Problem Optimal Control Problem Small Parameter Periodic Optimal Control Periodic Optimal Control Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. L. Tonkov, “Optimal periodic movements of a controllable system,” Mat. Fiz.,21, 45–59 (1977).Google Scholar
  2. 2.
    E. L. Tonkov, “Certain questions on the control of periodic movements,” in: Dynamics of Controllable Systems [in Russian], Nauka, Novosibirsk (1979), pp. 286–293.Google Scholar
  3. 3.
    V. A. Plotnikov, “Asymptotic methods in optimal control problems,” Author's Abstract of Doctoral Dissertation, Phys. Mat. Sci., Leningrad (1980).Google Scholar
  4. 4.
    M. G. Dmitriev, “Singular perturbations in a linear periodic optimal control problem with a quadratic functional,” in: Proc. Internat. Conf. Nonlinear Oscillat., Prague, 1978, Academia, Prague (1979), Vol. 2, pp. 861–866.Google Scholar
  5. 5.
    M. G. Dmitriev and N. D. Muradova, “Justification of the idealization of a mathematical model of a periodic optimization problem,” Izv. Akad. Nauk TurkSSR, Ser. Fiz. -Tekh. Khim. Geol. Nauk, No. 3, 6–12 (1980).Google Scholar
  6. 6.
    M. G. Dmitriev and N. D. Muradova, “Regularization of periodic problems of optimal control,” Ninth Internat. Conf. on Nonlinear Oscillations. Applications of Methods of the Theory of Nonlinear Oscillations in Mechanics, Physics, Electrical Engineering, Biology [in Russian], Vol. 3, Naukova Dumka, Kiev (1984), pp. 96–99.Google Scholar
  7. 7.
    A. B. Vasil'eva and M. G. Dmitriev, “Singular perturbations in optimal control problems,” Itogi Nauki, Mat. Analiz,20, 3–77 (1982).Google Scholar
  8. 8.
    M. G. Dmitriev, “The boundary layer in problems of optimal control,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 4, 63–69 (1983).Google Scholar
  9. 9.
    M. G. Dmitriev, “Singular perturbations in optimal control problems,” Author's Abstract of Doctoral Dissertation, Phys. -Mat. Sci., Moscow (1984).Google Scholar
  10. 10.
    A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations [in Russian], Nauka, Moscow (1973).Google Scholar
  11. 11.
    A. B. Vasil'eva and V. A. Esipova, “Conditionally stable singularly perturbed systems,” Dokl. Akad. Nauk SSSR,216, No. 1, 17–20 (1974).Google Scholar
  12. 12.
    A. B. Vasil'eva, “Asymptotics of solutions of certain problems for ordinary nonlinear differential equations with a small parameter in the highest derivatives,” Usp. Mat. Nauk,18, No. 3, 15–86 (1963).Google Scholar
  13. 13.
    H. Kano and T. Nishimura, “Periodic solutions of matrix Riccati equations with detectability and stabilizability,” Int. J. Control,29, No. 3, 471–487 (1979).Google Scholar
  14. 14.
    B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).Google Scholar
  15. 15.
    F. A. Aliev, “Choice of the programme of motion of a pacing apparatus with almost weightless feet,” in: Systems of Navigation and Control [in Russian], Izd. Inst. Mat. Akad. Nauk UkrSSR, Kiev (1983), pp. 85–97.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • M. G. Dmitriev
    • 1
  • V. N. Yan'shin
    • 1
  1. 1.Computing Center, Siberian BranchAcademy of Sciences of the USSRKrasnoyarsk

Personalised recommendations