Fluid Dynamics

, Volume 21, Issue 4, pp 524–530 | Cite as

Quasilongitudinal propagation of narrow beams of nonlinear magnetohydrodynamic waves

  • M. S. Ruderman
Article
  • 22 Downloads

Abstract

An equation, analogous to the Khokhlov-Zabolotskaya equation, is derived for narrow beams of quasitransverse waves propagating at small angles to a magnetic field. The effect of diffraction on wave propagation is investigated in the linear approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. G. Kulikovskii and G. A. Lyubimov, Magnetohydrodynamics [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  2. 2.
    E. N. Parker, “Origin and dynamics of cosmic rays,” Phys. Rev.,109, 1328 (1958).Google Scholar
  3. 3.
    D. Montgomery, “Development of hydromagnetic shocks from large-amplitude Alfvén waves,” Phys. Rev. Lett.,2, 36 (1859).Google Scholar
  4. 4.
    A. Barnes and J. V. Hollweg, “Large-amplitude hydromagnetic waves,” J. Geophys. Res.,79, 2302 (1974).Google Scholar
  5. 5.
    R. H. Cohen and R. M. Kulsrud, “Nonlinear evolution of parallel-propagating hydromagnetic waves,” Phys. Fluids,17, 2215 (1974).Google Scholar
  6. 6.
    E. A. Zabolotskaya and R. V. Khokhlov, “Quasiplane waves in the nonlinear acoustics of confined beams,” Akust. Zh.,15, 40 (1969).Google Scholar
  7. 7.
    O. V. Rudenko and S. I. Soluyan, Theoretical Basis of Nonlinear Acoustics [in Russian], Nauka, Moscow (1975).Google Scholar
  8. 8.
    E. A. Zabolotskaya and R. V. Khokhlov, “Convergent and divergent acoustic beams in nonlinear media,” Akust. Zh.,16, 49 (1970).Google Scholar
  9. 9.
    O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, “Bounded quasiplane beams of periodic perturbations in a nonlinear medium,” Akust. Zh.,19, 871 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • M. S. Ruderman
    • 1
  1. 1.Moscow

Personalised recommendations