# M. G. Krein's ideas in the theory of orthogonal polynomials

Article

- 83 Downloads

## Abstract

This is a survey of M. G. Krein's ideas in the theory of orthogonal polynomials.

## Keywords

Orthogonal Polynomial
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.A. I. Aptekarev and E. M. Nikishin, “Scattering problem for a discrete Sturm-Liouville operator,”
*Mat. Sb.*,**121**, No. 3, 327–358 (1983).Google Scholar - 2.N. I. Akhiezer, “On propositions of A. N. Kolmogorov and M. G. Krein,”
*Dokl. Akad. Nauk SSSR*,**40**, No. 1, 95–98 (1945).Google Scholar - 3.N. I. Akhiezer,
*Classical Moment Problem*[in Russian], Fizmatgiz. Moscow (1961).Google Scholar - 4.N. I. Akhiezer and M. G. Krein,
*On Some Problems in the Theory of Moments*[in Russian], GONTI, Khar'kov (1938).Google Scholar - 5.B. B. Bazanov, “Some problems connected with expansions in eigenfunctions of partial difference equations whose orders exceed one,” in:
*Proceedings of the First Scientific Conference of the Mathematical Chairs at Pedagogical Institutes of the Volga Region*, (1961), pp. 28–32.Google Scholar - 6.B. B. Bazanov, “Spectral functions of a symmetric partial difference operator,”
*Sib. Mat. Zh.*,**2**, No. 2, 187–200 (1961).Google Scholar - 7.B. B. Bazanov, “Spectral matrices of self-adjoint equations in finite differences,”
*Izv. Vyssh. Uchebn. Zaved., Mat.*, No. 3, 3–10 (1962).Google Scholar - 8.Yu. M. Berezanskii. “Expansions in eigenfunctions for the second-order partial difference equations,”
*Trudy Mosk. Mat. Obshch.*,**5**, 203–268 (1956).Google Scholar - 9.Yu. M. Berezanskii,
*Expansions in Eigenfunctions of Self-Adjoint Operators*, American Mathematical Society, Providence, RI (1965).Google Scholar - 10.F. R. Gantmakher and M. G. Krein,
*Oscillation Matrices and Kernels and Small Oscillations of Mechanical Systems*[in Russian], Gostekhizdat, Moscow-Leningrad (1950).Google Scholar - 11.Ya. L. Geronimus, “On closeness of some systems in the space
*L*_{α}^{p},”*Zapiski NII Mat. Mekh., Khark. Mat. Obshch.*,**21**, 24–45 (1949).Google Scholar - 12.G. Sh. Guseinov, “Determination of an infinite Jacobian matrix by its scattering data,”
*Dokl. Akad. Nauk SSSR*,**227**, No. 6, 1289–1292 (1976).Google Scholar - 13.Yu. L. Kishakevich, “Marchenko-type spectral functions of difference operators of even orders,”
*Mat. Zametki*,**11**, No. 4, 437–446 (1972).Google Scholar - 14.A. N. Kolmogorov, “Stationary sequences in Hilbert spaces,”
*Bull. Mosk. Univ., Math.*,**2**, Issue 6, 1–40 (1941).Google Scholar - 15.A. N. Kolmogorov, “Interpolation and extrapolation of random stationary sequences,”
*Izv. Akad. Nauk SSSR, Ser. Mat.*,**5**, No. 1, 3–14 (1941).Google Scholar - 16.M. A. Krasnosel'skii and M. G. Krein, “Main theorems on extensions of Hermitian operators and some their applications to the theory of orthogonal polynomials,”
*Usp. Mat. Nauk*,**2**, No. 3, 60–106 (1947).Google Scholar - 17.M. G. Krein, “A connection of the spectrum of Jacobian forms with the theory of torsional oscillations of shafts,”
*Mat. Sb.*,**40**, No. 4, 455–466 (1933).Google Scholar - 18.M. G. Krein, “On the nodes of harmonic oscillations of mechanical systems of a special kind,”
*Mat. Sb.*,**41**, No. 2, 339–348 (1934).Google Scholar - 19.M. G. Krein, “A generalization of the results of G. Szegö, V. I. Smirnov, and A. N. Kolmogorov,”
*Dokl. Akad. Nauk SSSR*,**46**, No. 3, 95–98 (1945).Google Scholar - 20.M. G. Krein, “Infinite
*J*-matrices and the matrix moment problem,”*Dokl. Akad. Nauk SSSR*,**69**, No. 2, 125–128 (1949).Google Scholar - 21.M. G. Krein, “Principal concepts of the theory of representations of Hermitian operators with deficiency index (
*m, m*),”*Ukr. Mat. Zh.*,**1**, No. 2, 3–66 (1949).Google Scholar - 22.M. G. Krein, “Continual analogs of the assertions about polynomials orthogonal on the unit circle,”
*Dokl. Akad. Nauk SSSR*,**105**, No. 4, 637–640 (1955).Google Scholar - 23.M. G. Krein, “A continual analog of a Christoffel formula in the theory of orthogonal polynomials,”
*Dokl. Akad. Nauk SSSR*,**113**, No. 5, 970–973 (1957).Google Scholar - 24.M. G. Krein, “Location of the roots of polynomials orthogonal on the unit circle with respect to the weight with alternating sign,”
*Teor. Funkts., Funk. Anal. Prilozhen.*, Issue 2, 131–137 (1966).Google Scholar - 25.M. G. Krein and H. K. Langer, “Continual analogs of the orthogonal polynomials on the unit circle with respect to an indefinite weight,”
*Dokl. Akad. Nauk SSSR*,**258**, No. 3, 537–541 (1981).Google Scholar - 26.V. A. Marchenko,
*Spectral Theory of the Sturm-Liouville Operators*[in Russian], Naukova Dumka, Kiev (1972).Google Scholar - 27.P. B. Naiman, “On the sets of isolated points of increase for the spectral function of a Jacobian matrix constant in a limit,”
*Izv. Vyssh. Uchebn. Zaved., Mat.*, No. 1, 129–135 (1959).Google Scholar - 28.P. B. Naiman, “To the theory of periodic Jacobian matrices and matrices periodic in a limit,”
*Dokl. Akad. Nauk SSSR*,**143**, No. 2, 277–279 (1962).Google Scholar - 29.P. B. Naiman, “Some criteria of unboundedness of Jacobian matrices and discreteness of their spectrum,”
*Dokl. Akad. Nauk Ukr. SSR*, No. 2, 141–143 (1966).Google Scholar - 30.E. M. Nikishin, “Discrete Sturm-Liouville operators and some problems in the theory of functions,”
*Trudy Seminara im. Petrovskogo*, Issue 10, 3–77 (1984).Google Scholar - 31.E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials,”
*Mat. Sb.*,**103**, 237–252 (1977).Google Scholar - 32.E. A. Rakhmanov, “On asymptotic properties of the orthogonal polynomials on the real axis,”
*Mat. Sb.*,**119**, 169–203 (1982).Google Scholar - 33.G. Szegö,
*Orthogonal Polynomials*[Russian translation]. Fizmatgiz, Moscow (1962).Google Scholar - 34.V. P. Serebryakov. “The inverse scattering problem for difference equations with matrix coefficients,”
*Dokl. Akad. Nauk SSSR*,**250**, No. 3, 562–565 (1980).Google Scholar - 35.V. P. Serebryakov, “On the properties of scattering data for the discrete Sturm-Liouville equation,”
*Trudy Mosk. Mat. Obshch.*,**49**, 130–140 (1986).Google Scholar - 36.P. K. Suetin, “V. A. Steklov's problem in the theory of orthogonal polynomials,” in:
*Itogi VINITI, Mat. Analiz*[in Russian], Vol. 15, VINITI, Moscow (1977), pp. 5–82.Google Scholar - 37.V. G. Tamopol'skii, “Scattering problem for a difference equation with operator coefficients,”
*Ukr. Mat. Zh.*,**28**, No. 3, 342–351 (1976).Google Scholar - 38.G. Ts. Tumarkin, “Approximation in the mean for complex-valued functions,”
*Dokl. Akad. Nauk SSSR*,**84**, No. 1, 21–24 (1952).Google Scholar - 39.D. Alpay and I. Gohberg. “On orthogonal matrix polynomials,”
*Oper. Theory: Adv. Appl.*,**34**, 25–46 (1988).Google Scholar - 40.S. Basu and N. K. Bose, “Matrix Stieltjes series and network models,”
*SIAM J. Math.*,**14**, No. 2, 209–222 (1983).Google Scholar - 41.A. Ben-Artzi and I. Gohberg, “Extension of a theorem of M. G. Krein on orthogonal polynomials for the nonstationary case.”
*Operator Theory: Adv. Appl.*,**34**, 25–41 (1988).Google Scholar - 42.T. S. Chihara, “The derived set of the spectrum of a distribution function,”
*Pacif. J. Math. Anal.*,**35**, 571–574 (1970).Google Scholar - 43.T. S. Chihara, “Spectral properties of orthogonal polynomials on unbounded sets,”
*Trans. Am. Math. Soc*,**270**, 623–639 (1982).Google Scholar - 44.T. S. Chihara, “Orthogonal polynomials with discrete spectra on the real line,”
*J. Approx. Theory*,**42**, 97–105 (1982).Google Scholar - 45.T. S. Chihara and P. Nevai, “Orthogonal polynomials and measures with finitely many point masses,”
*J. Approx. Theory*,**35**, 370–380.Google Scholar - 46.Ph. Delsarte and Y. Genin, “Spectral properties of finite Toeplitz matrices,”
*Lect. Notes Control Inform. Sci.*,**58**, 194–213 (1984).Google Scholar - 47.Ph. Delsarte, Y. Genin, and Y. Kamp, “Orthogonal polynomial matrices on the unit circle,”
*IEEE Trans. Circuits Syst.*,**25**, 145–160 (1978).Google Scholar - 48.J. Dombrowski, “Tridiagonal matrix representations of cyclic self-adjoint operators,”
*Pacif. J. Math*,**114**, 325–334 (1984).Google Scholar - 49.J. Dombrowski, “Tridiagonal matrix representations of cyclic self-adjoint operators. II,”
*Pacif. J. Math*,**120**, 47–53 (1985).Google Scholar - 50.J. Dombrowski, “Spectral measures corresponding to orthogonal polynomials with unbounded recurrence coefficients,”
*J. Constr. Approx.*,**5**, 371–381 (1989).Google Scholar - 51.J. Dombrowski and P. Nevai, “Orthogonal polynomials, measures and recurrence relations,”
*SIAM J. Math. Anal*,**17**, 752–759 (1986).Google Scholar - 52.H. Dym, “On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy,”
*Integr. Equat. Operator Theory*,**12**, 759–812 (1989).Google Scholar - 53.R. L. Ellis, I. Gohberg, and D. C. Lay, “On two theorems of M. G. Krein concerning polynomials orthogonal on the unit circle,”
*Integr. Equat. Operator Theory*,**11**, 87–104 (1988).Google Scholar - 54.G. Freud, “On the greatest zero of an orthogonal polynomial,”
*J. Approx. Theory*,**46**, 16–24 (1986).Google Scholar - 55.J. S. Geronimo. “Matrix orthogonal polynomials on the unit circle,”
*J. Math. Phys*,**22**, No. 7, 1359–1365 (1981).Google Scholar - 56.J. S. Geronimo, “An upper bound on the number of eigenvalues of an infinite-dimensional Jacobi matrix,”
*J. Math. Phys*,**23**, No. 6, 917–921 (1982).Google Scholar - 57.J. S. Geronimo, “On the spectra of infinite-dimensional Jacobi matrices,”
*J. Approx. Theory*,**53**, 251–265 (1988).Google Scholar - 58.J. S. Geronimo and K. M. Case, “Scattering theory and polynomials orthogonal on the real line,”
*Trans. Am. Math. Soc.*,**258**, 467–494 (1980).Google Scholar - 59.J. S. Geronimo and P. Nevai, “Necessary and sufficient conditions relating the coefficients in the recurrence formula to the spectral function for orthogonal polynomials,”
*SIAM J. Math. Anal.*,**14**, 622–637 (1983).Google Scholar - 60.J. S. Geronimo and W. Van Assche, “Orthogonal polynomials with asymptotically periodic recurrence coefficients,”
*J. Approx. Theory*,**46**, 251–283 (1986).Google Scholar - 61.J. Gilewicz and E. Leopold, “On the sharpness of results in the theory of location of zeros of polynomials defined by three-term recurrence relations,”
*Springer Lect. Notes Math*,**1171**, 259–266 (1985).Google Scholar - 62.I. Gohberg and L. Lerer, “Matrix generalizations of M. G. Krein theorems on orthogonal polynomials,”
*Oper. Theory: Adv. Appl.*,**34**, 137–162 (1988).Google Scholar - 63.M. G. Krein and H. Langer, “On some continuation problems which are closely related to the theory of Hermitian operators in spaces Π
_{K}Pt. 4.: Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions,”*J. Oper. Theory, Bucharest*,**13**, No. 2, 299–317 (1985).Google Scholar - 64.A. Magnus, “A proof of Freud's conjecture about orthogonal polynomials related to ∣
*x*∣^{p}exp (−x^{2m}),”*Springer Lect. Notes Math*,**1171**, 362–371 (1985).Google Scholar - 65.D. Maki, “On constructing distribution function: with applications to Lommel polynomials and Bessel functions,”
*Trans. Am. Math. Soc.*,**130**, 281–297 (1968).Google Scholar - 66.A. Máté and P. G. Nevai, “Orthogonal polynomials and absolutely continuous measures,” in: C. K. Chui, et al. (editors).
*Approximation Theory. IV*, Academic Press, New York, 1983, pp. 611–617.Google Scholar - 67.A. Máté, P. G. Nevai, and V. Totik, “Asymptotics for the zeros of orthogonal polynomials associated with infinite intervals,”
*J. London Math. Soc.*,**33**, No. 2, 303–310 (1986).Google Scholar - 68.
- 69.P. G. Nevai, “Orthogonal polynomials defined by a recurrence relation,”
*Trans. Am. Math. Soc.*,**250**, 369–384 (1979).Google Scholar - 70.
- 71.
- 72.G. Szegö, “Beiträge zur Theorie der Toeplitzen Formen (Ernsten Milteilung).”
*Math Z.*,**6**(1920).Google Scholar - 73.W. Van Assche, “Asymptotics for orthogonal polynomials,”
*Springer Lect. Notes Math.*,**1265**(1987).Google Scholar - 74.W. Van Assche and J. S. Geronimo, “Asymptotics for orthogonal polynomials on and off essential spectrum,”
*J. Approx. Theory*,**55**, 220–231 (1988).Google Scholar - 75.E. A. Van Doom, “Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tridiagonal matrices,”
*J. Approx. Theory*,**51**, 254–266 (1987).Google Scholar - 76.D. C. Youla and N. Kazanjian, “Bauer type factorization of positive matrices and the theory of matrix polynomials on the unit circle,”
*IEEE Trans. Circuits Systems*,**25**, 57–69 (1978).Google Scholar

## Copyright information

© Plenum Publishing Corporation 1995