Ukrainian Mathematical Journal

, Volume 40, Issue 2, pp 202–206 | Cite as

Central limit theorem in a Banach space

  • I. K. Matsak
  • A. N. Plichko
Brief Communications
  • 57 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Araujo and E. Giné The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York (1980).Google Scholar
  2. 2.
    S. A. Cobajan and V. I. Tarieladze, “A counterexample concerning the CLT in Banach space,” Lect. Notes Math.,656, 25–30 (1978).Google Scholar
  3. 3.
    V. I. Paulauskas, “On the central limit theorem in the Banach space co,” Dokl. Akad. Nauk SSSR,254, No. 2, 286–288 (1980).Google Scholar
  4. 4.
    V. I. Paulauskas, A. Rachkauskas, and V. Sakalauskas, “On the central limit theorem for sequences converging to zero,” Litov. Mat. Sb.,23, No. 1, 163–174 (1983).Google Scholar
  5. 5.
    B. Heinkel, “Majorizing measures and limit theorems for co valued random variables,” Lect. Notes Math.,990, 136–149 (1983).Google Scholar
  6. 6.
    V. D. Mil'man, “Geometric theory of Banach spaces. I,” Usp. Mat. Nauk,23, No. 3, 113–174 (1970).Google Scholar
  7. 7.
    N. N. Vakhaniya, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions in Banach Spaces [in Russian], Nauka, Moscow (1985).Google Scholar
  8. 8.
    Nguyen Zhu Tien, “On weak relative compactness of probability measures in Banach spaces with a Schauder basis,” Soobshch. Akad. Nauk GSSR,71, No. 1, 21–24 (1973).Google Scholar
  9. 9.
    J. P. Kahane, Some Random Series of Functions, D. C. Heath & Co., Lexington, Massachusetts (1968).Google Scholar
  10. 10.
    I. F. Pinelis and A. I. Sakhanenko, “Remarks on inequalities for the probabilities of large deviations,” Teor. Veroyatn. Primen.,30, No. 1, 127–131 (1985).Google Scholar
  11. 11.
    V. V. Petrov, Sums of Independent Random Variables [in Russian], Nauka, Moscow (1972).Google Scholar
  12. 12.
    Yu. V. Prokhorov, “An extremal problem in probability theory,” Teor. Veroyatn. Primen.,4, No. 2, 211–214 (1959).Google Scholar
  13. 13.
    M. Abramovits and I. Stigan (eds.), Handbook of Special Functions [in Russian], Nauka, Moscow (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • I. K. Matsak
    • 1
  • A. N. Plichko
    • 1
  1. 1.Kiev UniversityUSSR

Personalised recommendations