Ukrainian Mathematical Journal

, Volume 40, Issue 2, pp 169–179 | Cite as

Approximation by fourier operators of functions defined on the real line

  • A. I. Stepanets
Article

Keywords

Real Line Fourier Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. I. Stepanets, “Classification of periodic functions and convergence rate of their Fourier series,” Izv. Akad. Nauk SSSR, Ser. Mat.,50, No. 1, 101–136 (1986).Google Scholar
  2. 2.
    A. I. Stepanets, “Approximation by Fourier sums of functions with slowly decreasing Fourier coefficients,” Ukr. Mat. Zh.,38, No. 6, 755–762 (1986).Google Scholar
  3. 3.
    A. I. Stepanets and A. K. Novikova, “Approximation of periodic functions by Fourier sums in the integral metric,” Approximation of Periodic Functions by Fourier Sums [in Russian], 26–54, Kiev (1984). Preprint 84.43, Akad. Nauk Ukr. SSR, Inst. Mat.Google Scholar
  4. 4.
    N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).Google Scholar
  5. 5.
    A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  6. 6.
    A. I. Stepanets, Uniform Approximations by Trigonometric Polynomials [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  7. 7.
    A. I. Stepanets, “Moduli of half-decay of monotone functions and convergence rate of Fourier series,” Ukr. Mat. Zh.,38, No. 5, 618–624 (1986).Google Scholar
  8. 8.
    A. N. Kolmogoroff, “Zur Grossenordnung des Restliedes Fourierschen Reihen, differenzcerbaren Functionen,” Ann. Math.,36, 521–526 (1935).Google Scholar
  9. 9.
    S. M. Nikol'skii, “Approximation of periodic functions by trigonometric polynomials,” Tr. Mat. Inst. Akad. Nauk SSSR,15, 1–76 (1945).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. I. Stepanets
    • 1
  1. 1.Institute of MathematicsAcademy of Sciences of the Ukrainian SSRKiev

Personalised recommendations