Ukrainian Mathematical Journal

, Volume 39, Issue 1, pp 73–77 | Cite as

Elements of the integrability theory of discrete dynamical systems

  • A. K. Prikarpatskii


Dynamical System Integrability Theory Discrete Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. A. Mitropol'skii and V. G. Samoilenko, “Differential-difference dynamical systems associated with the difference Dirac operator, and their complete integrability,” Ukr. Mat. Zh.,37, No. 2, 180–186 (1985).Google Scholar
  2. 2.
    N. N. Bogolyubov Jr., A. K. Prikarpatskii, A. M. Kurbatov, and V. G. Samoilenko, “Nonlinear model of the Schrödinger type: conservation laws, Hamiltonian structure and the complete integrability,” Teor. Mat. Fiz.,65, No. 2, 271–284 (1985).Google Scholar
  3. 3.
    P. D. Lax, “Periodic solutions of K de V equation,” Commun. Pure Appl. Mat.,28, No. 2, 141–188 (1975).Google Scholar
  4. 4.
    A. I. Skripnik, A. K. Prikarpatskii, and V. G. Samoilenko, “Direct methods in finding the Lax type representations of dynamical systems,” Dokl. Akad. Nauk, Ukr. SSR, Ser. A, No. 5, 21–26 (1985).Google Scholar
  5. 6.
    Yu. N. Sidorenko, “The Hamiltonian property of the nonlinear Bogolyubov model,” ibid., No. 3, 240–242 (1986).Google Scholar
  6. 7.
    Yu. N. Sidorenko, “On the Hamiltonian property of some bicomponent systems,” Statistical Mechanics and Quantum Field Theory, Sb. Nauchn. Tr., Leningrad Section of the Mathematical Institute,150, 102–108 (1986).Google Scholar
  7. 8.
    B. Fuchssteiner and A. S. Fokas, “Symplectic structures, their Backlund transformations and hereditary symmetries,” Physica D.,4, No. 1, 47–66 (1981).Google Scholar
  8. 9.
    V. G. Samoilenko and A. K. Prikarpatskii, “Algebraic structure of the Bogolyubov (Jr.) gradient method in the theory of nonlinear dynamical systems,” Kiev 1986 (Preprint, Akad. Nauk Ukr. SSR, Inst. of Mathematics; No. 86–53).Google Scholar
  9. 10.
    I. M. Gel'fand and L. A. Dikii, “The Liouville theory and integrable nonlinear equations,” Funkts. Anal. Prilozhen.,13, No. 1, 8–20 (1979).Google Scholar
  10. 11.
    S. Maeda, “Canonical structure and symmetries for discrete systems,” Math. Jpn.,25, No. 4, 405–420 (1980).Google Scholar
  11. 12.
    S. Maeda, “Lagrangian formulation of discrete systems and concept of difference space,” ibid.,27, No. 3, 345–356 (1982).Google Scholar
  12. 13.
    N. N. Bogolyubov, (Jr.) and A. K. Prikarpatskii, “Inverse periodic problem for a discrete approximation of the nonlinear Schrödinger equation,” Dokl. Akad. Nauk SSSR,265, No. 5, 1103–1108 (1982).Google Scholar
  13. 14.
    V. S. Gerdjikov, M. I. Ivanov, and P. P. Kulish, “Complete integrability of difference evolutions,” Dubna, 1980 (Preprint, Joint Inst. of Nuclear Research, No. 2-80-882).Google Scholar
  14. 15.
    M. J. Ablowitz and J. F. Ladic, “Nonlinear differential-difference equations,” J. Math. Phys.,16, No. 3, 598–603 (1975).Google Scholar
  15. 16.
    S. P. Novikov (ed.), Soliton Theory: Inverse Problem Method [in Russian], Nauka, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • A. K. Prikarpatskii
    • 1
  1. 1.Institute of Applied Problems of Mechanics and MathematicsAcademy of Sciences of the Ukrainian SSRUSSR

Personalised recommendations