Advertisement

Ukrainian Mathematical Journal

, Volume 39, Issue 1, pp 61–66 | Cite as

Almost-periodic solutions of impulse systems

  • N. A. Perestyuk
  • M. U. Akhmetov
Article

Keywords

Impulse System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. M. Krylov (N. Kryloff) and N. N. Bogoly ubov (N. Bogoliuboff), Introduction to Nonlinear Mechanics, Princeton Univ. Press (1947).Google Scholar
  2. 2.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).Google Scholar
  3. 3.
    C. S. Hsu and W.-H. Cheng, “Applications of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems,” Trans. ASME, Ser. E, J. Appl. Mech.,40, No. 1, 78–86 (1973).Google Scholar
  4. 4.
    L. Amerio, “Soluzioni quasiperiodiche, o limitate, di sistemi differenziali non lineari quasiperiodici, o limitati,” Ann. Mat. Pura Appl.,39, 97–119 (1955).Google Scholar
  5. 5.
    B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press (1982).Google Scholar
  6. 6.
    É. Mukhamadiev, “On the invertibility of a differential operator in the space of functions that are bounded on the real axis,” Dokl. Akad. Nauk SSSR,196, No. 1, 47–49 (1971).Google Scholar
  7. 7.
    M. U. Akhmetov, “Almost-periodic solutions of differential equations with impulse action,” Differents. Uravn.,20, No. 5, 911–912 (1984).Google Scholar
  8. 8.
    M. U. Akhmetov and N. A. Perestyuk, “On almost-periodic solutions of a certain class of systems with impulse action,” Ukr. Mat. Zh.,36, No. 4, 486–490 (1984).Google Scholar
  9. 9.
    A. M. Samoilenko, N. A. Perestyuk, and M. U. Akhmetov, “Almost-periodic solutions of differential equations with impulse action,” Preprint 83.26. Inst. Mat. Akad. Nauk USSR, Kiev (1983).Google Scholar
  10. 10.
    A. M. Samoilenko and N. A. Perestyuk, Differential Equations with Impulse Action [in Russian], Kiev Univ. (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • N. A. Perestyuk
    • 1
  • M. U. Akhmetov
    • 1
  1. 1.Kiev UniversityUSSR

Personalised recommendations