Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kravchuk polynomials and group representations

  • 54 Accesses


Kravchuk polynomials of a discrete variable and different types of Kravchuk q-polynomials are determined. The importance of these polynomials for the theory of representations of Lie and Chevalley groups and the theory of symmetric and quantum groups is shown. The article presents a survey of the contemporary results in these areas.

This is a preview of subscription content, log in to check access.


  1. 1.

    N. Ya. Vilenkin, Special Functions and Theory of Group Representations [in Russian], Nauka, Moscow (1965).

  2. 2.

    N. Ya. Vilenkin and A. U. Klimyk, “Representations of Lie groups and special functions,” Itogi Nauki i Tekhniki (VINITI). Series “Contemporary Problems of Mathematics. Fundamental Trends,”59, 145–264 (1990).

  3. 3.

    N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions, Kluwer, Dordrecht (1991), Vol. 1.

  4. 4.

    H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1932).

  5. 5.

    E. P. Wigner, The Application of Group Theory to the Special Functions of Mathematical Physics, Princeton Lectures (1955).

  6. 6.

    V. Bargmann, “Irreducible unitary representations of the Lorentz group,” Ann. Math.,48, 568–590 (1947).

  7. 7.

    M. Krawtchouk [Kravchuk], “On a generalization of Hermite's polynomials,” C. r. Acad. sci. Paris, 620–622 (1929).

  8. 8.

    W. Hahn, “Uber Orthogonalpolynome, die q-Differenzengleichuugen geniigen,” Math. Nachr.,2, 4–34 (1949).

  9. 9.

    D. Stanton, “Orthogonal polynomials and Chevalley groups,” in: Special Functions: Group Theoretical Aspects and Applications, Reidel, Dordrecht (1984), 87–128.

  10. 10.

    P. Delsarte, “Properties and applications of the recurrence F(i+1, k+1, n+1)= qk+1F(i, k+1, n) − qkF(i, k, n),” SIAM J. Appl. Math.,31, 262–270 (1976).

  11. 11.

    T. H. Koornwinder, “Representations of the twisted SU(2) quantum group and some q-hypergeometric orthogonal polynomials,” Proc. Kon. ned. akad. wetensch. A.,92, 97–117 (1989).

  12. 12.

    G. E. Andrews and R. Askey,.“Classical orthogonal polynomials,” Lect. Notes Math.,1171, 36–62 (1985).

  13. 13.

    T. H. Koornwinder, “Krawtchouk polynomials, a unification of two different group theoretical interpretations,” SIAM J. Math. Anal.,13, 1011–1023 (1982).

  14. 14.

    R. Askey and G. Gasper, “Convolution structures for Laguerre polynomials,” J. Anal. Math.,31, 48–68 (1977).

  15. 15.

    N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions, Kluwer, Dordrecht (1992), Vol. 2.

  16. 16.

    A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, The Classical Orthogonal Polynomials of a Discrete Variable [in Russian], Nauka, Moscow (1985).

  17. 17.

    A. V. Rozemblyum, “Spectral analysis of generators of representations of the group U(3),” Teoret. mat. fizika,73, 475–479 (1987).

  18. 18.

    N. Ya. Vilenkin and A. U. Klimyk, “Representation of the group SU(1, 1) and the Kravchuk-Meixner functions,” Dokl. Akad. Nauk UkrSSR. Ser. A, No. 6, 12–16 (1988).

  19. 19.

    C. F. Dunkl, “Krawtchouk polynomials addition theorem and wreath product of symmetric groups,” Indiana Univ. Math. J.,25, 358 (1976).

  20. 20.

    D. Stanton, “Some q-Krawtchouk polynomials on Chevalley groups,” Amer. J. Math.,102, 625–662 (1980).

  21. 21.

    D. Stanton, “Three addition theorems for some q-Krawtchouk polynomials,” Geom. dedic.,10, 403–425 (1981).

  22. 22.

    D. Stanton, “A partially ordered set and q-Krawtchouk polynomials,” J. Combin. Theory. A,30, 276–284 (1981).

  23. 23.

    T. H. Koornwinder, “Orthogonal polynomials in connection with quantum groups,” in Orthogonal Polynomials: Theory and Practice, Kluwer, Dordrecht (1991), 257–292.

  24. 24.

    T. T. Masuda, K. Mimachi, Y. Nakagami, et al., “Representations of the quantum group SUq(2) and the little g-Jacobi polynomials,” J. Funct. Anal.,99, 357–386 (1991).

  25. 25.

    N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions. Vol. 3. Representation of Classical and Quantum Groups and Special Functions, Kluwer, Dordrecht (1992).

  26. 26.

    E. Abe, Hopf Algebras, Cambridge University Press, Cambridge (1980).

  27. 27.

    V. A. Groza, I. I. Kachurik, and A. U. Klimyk, “Matrix elements and Clebsch-Gordan coefficients of the quantum group SUq(2),” J. Math. Phys.,31, 2769–2780 (1990).

  28. 28.

    V. A. Groza, I.I. Kachurik, and A. U. Klimyk, The Quantum Algebra Uq(su2) and Basic Hypergeometric Functions, Preprint No. 89-5IE, Institute of Mathematics, Academy of Sciences, UkrRSR, Kiev (1989).

  29. 29.

    V. A. Groza and I. I. Kachurik, “Addition and multiplication theorems for Kravchuk, Hahn, and Racah q-polynomials,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 5, 3–6 (1990).

Download references

Author information

Additional information

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 44, No. 7, pp. 888–901, July, 1992.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klimyk, A.U. Kravchuk polynomials and group representations. Ukr Math J 44, 801–812 (1992). https://doi.org/10.1007/BF01056133

Download citation


  • Group Representation
  • Quantum Group
  • Chevalley Group
  • Contemporary Result
  • Kravchuk Polynomial