Journal of Statistical Physics

, Volume 66, Issue 3–4, pp 1011–1044 | Cite as

A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation

  • Wolfgang Wagner
Articles

Abstract

Bird's direct simulation Monte Carlo method for the Boltzmann equation is considered. The limit (as the number of particles tends to infinity) of the random empirical measures associated with the Bird algorithm is shown to be a deterministic measure-valued function satisfying an equation close (in a certain sense) to the Boltzmann equation. A Markov jump process is introduced, which is related to Bird's collision simulation procedure via a random time transformation. Convergence is established for the Markov process and the random time transformation. These results, together with some general properties concerning the convergence of random measures, make it possible to characterize the limiting behavior of the Bird algorithm.

Key words

Boltzmann equation Bird's direct simulation Monte Carlo method stochastic numerical algorithm convergence of random measures Markov jump processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Arsen'yev, On the approximation of the solution of the Boltzmann equation by solutions of the Ito stochastic differential equations,USSR Comput. Math. Math. Phys. 27(2):51–59 (1987).Google Scholar
  2. 2.
    H. Babovsky, A convergence proof for Nanbu's Boltzmann simulation scheme,Eur. J. Mech. B Fluids 8(1):41–55 (1989).Google Scholar
  3. 3.
    H. Babovsky and R. Illner, A convergence proof for Nanbu's simulation method for the full Boltzmann equation,SIAM J. Numer. Anal. 26(1):45–65 (1989).Google Scholar
  4. 4.
    P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).Google Scholar
  5. 5.
    G. A. Bird, Direct simulation and the Boltzmann equation,Phys. Fluids 13(10):2676–2681 (1970).Google Scholar
  6. 6.
    G. A. Bird,Molecular Gas Dynamics (Clarendon Press, Oxford, 1976).Google Scholar
  7. 7.
    C. Cercignani,Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).Google Scholar
  8. 8.
    C. Cercignani,The Boltzmann Equation and its Applications (Springer, New York, 1988).Google Scholar
  9. 9.
    M. H. A. Davis,Lectures on Stochastic Control and Nonlinear Filtering (Tata Institute of Fundamental Research, Bombay, 1984).Google Scholar
  10. 10.
    S. M. Ermakov, V. V. Nekrutkin, and A. S. Sipin,Random Processes for Classical Equations of Mathematical Physics (Nauka, Moscow, 1984) [in Russian] (English translation, Kluwer Academic Publishers, Dordrecht, 1989).Google Scholar
  11. 11.
    S. N. Ethier and T. G. Kurtz,Markov Processes, Characterization and Convergence (Wiley, New York, 1986).Google Scholar
  12. 12.
    W. Feller,An Introduction to Probability Theory and its Applications, Vol. 2 (Wiley, New York, 1966).Google Scholar
  13. 13.
    W. Greenberg, J. Polewczak, and P. F. Zweifel, Global existence proofs for the Boltzmann equation, inNonlinear Phenomena. I. The Boltzmann Equation, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1983), pp. 19–49.Google Scholar
  14. 14.
    F. Gropengiesser, H. Neunzert, and J. Struckmeier, Computational methods for the Boltzmann equation, inApplied and Industrial Mathematics, R. Spigler, ed. (Kluwer Academic Publishers, Dordrecht, 1991), pp. 111–140.Google Scholar
  15. 15.
    P. L. Hennequin and A. Tortra,Probability Theory and Some Applications (Nauka, Moscow, 1974) [Russian translation].Google Scholar
  16. 16.
    R. Illner and H. Neunzert, On simulation methods for the Boltzmann equation,Transport Theory Stat. Phys. 16(2&3):141–154 (1987).Google Scholar
  17. 17.
    K. Koura, Null-collision technique in the direct-simulation Monte Carlo method,Phys. Fluids 29(11):3509–3511 (1986).Google Scholar
  18. 18.
    J. L. Lebowitz and E. W. Montroll (eds.),Nonequilibrium Phenomena. I. The Boltzmann Equation (North-Holland, Amsterdam, 1983).Google Scholar
  19. 19.
    A. V. Lukshin and S. N. Smirnov, An efficient stochastic algorithm for solving the Boltzmann equation,USSR Comput. Math. Math. Phys. 29(1):83–87 (1989).Google Scholar
  20. 20.
    K. Nanbu, Interrelations between various direct simulation methods for solving the Boltzmann equation,J. Phys. Soc. Japan 52(10):3382–3388 (1983).Google Scholar
  21. 21.
    H. Ploss, On simulation methods for solving the Boltzmann equation,Computing 38:101–115 (1987).Google Scholar
  22. 22.
    A. V. Skorokhod,Stochastic Equations for Complex Systems (Nauka, Moscow, 1983) [in Russian] (English translation, Reidel, Dordrecht, 1988).Google Scholar
  23. 23.
    S. N. Smirnov, Justification of a stochastic method for solving the Boltzmann equation,USSR Comput. Math. Math. Phys. 29(1):187–192 (1989).Google Scholar
  24. 24.
    A.-S. Sznitman, Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated,J. Funct. Anal. 56:311–336 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Wolfgang Wagner
    • 1
  1. 1.Laboratory for TechnomathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations