Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Supersonic drag of three-dimensional bodies with a star-shaped cross section and its calculation

  • 44 Accesses

  • 4 Citations

Abstract

The effect on the aerodynamic drag of the real properties of the gas in the shock layer around pyramidal star-shaped bodies (the viscosity, the displacement thickness of the boundary layer, its separation under the influence of the inner shocks) is considered. It is shown that the models for calculating the total drag of star-shaped bodies which do not take into account the displacement thickness of the boundary layer are applicable only at low supersonic free-stream velocities (M < 3). A model of the boundary layer displacement thickness is proposed and tested over a broad range of variation of the parameters that determine the geometry of the pyramidal bodies for high supersonic or hypersonic speeds. A comparison with the experimental data shows that the calculation procedure adequately reflects the results of experiments on the aerodynamic drag of star-shaped bodies in cases in which the inner shocks in the shock layer do not lead to boundary layer separation and can be used in optimization problems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. L. Gonor, M. A. Zubin, N. A. Ostapenko, G. G. Chernyi, and A. I. Shvets, “Aerodynamics of star-shaped bodies at supersonic speeds,” in:Contemporary Problems of Mechanics [in Russian], Izd. MGU, Moscow (1984), p. 30.

  2. 2.

    M. A. Zubin and N. A. Ostapenko, “Aerodynamic characteristics and static stability reserve of conical star-shaped bodies at supersonic velocities,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 142 (1992).

  3. 3.

    V. M. Glazkov, V. V. Duganov, M. A. Zubin, and N. A. Ostapenko, “Aerodynamics of star-shaped bodies at hypersonic velocities, in:Abstracts of Proceedings of Seventh All-Union Congress on Theoretical and Applied Mechanics, Moscow, 15–21 August 1991 [in Russian], Moscow (1991), p. 104.

  4. 4.

    A. L. Gonor, M. A. Zubin, and N. A. Ostapenko, “Experimental investigation of the aerodynamic characteristics of star-shaped bodies at supersonic velocities,” in:Nonequilibrium Gas Flows and Optimum Supersonic Body Shapes [in Russian], Izd. MGU, Moscow (1978), p. 28.

  5. 5.

    Modern High-Velocity Aerodynamics, Vols. 1 and 2 [in Russian], Izd. Inostr. Lit., Moscow (1955–1956).

  6. 6.

    V. D. Perminov and E. E. Solodkin, “Axisymmetric bodies with minimum drag and minimum surface flux for various types of boundary layer flow,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 94 (1971).

  7. 7.

    K. G. Bowcutt, J. D. Anderson, and D. Capriotti, “Viscous optimized hypersonic waveriders,”AIAA, No. 272 (1987).

  8. 8.

    J. M. Cassanto, “Base pressure on cones with a flat end section,”AIAA J.,3, No. 12, 251 (1965).

  9. 9.

    L. V. Gogish and G. Yu. Stepanov,Turbulent Separated Flows [in Russian], Nauka, Moscow (1979).

  10. 10.

    G. I. Maikapar, “Wave drag of nonaxisymmetric bodies in supersonic flow,”Prikl. Mat. Mekh.,23, 376 (1959).

  11. 11.

    M. A. Zubin and N. A. Ostapenko, “Experimental investigation of certain characteristics of supersonic flow past V-shaped wings,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 130 (1975).

  12. 12.

    N. A. Ostapenko, “Floating of the Ferri point on the windward side of V-shaped wings,”Dokl. Akad. Nauk SSSR,287, 295 (1986).

  13. 13.

    M. A. Zubin and N. A. Ostapenko, “Flow structure in a corner separation zone with normal shock-boundary layer interaction,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 51 (1979).

  14. 14.

    M. A. Zubin and N. A. Ostapenko, “Geometric characteristics of turbulent boundary layer separation with normal shock interaction in conical flows,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 43 (1983).

  15. 15.

    M. A. Zubin and N. A. Ostapenko, “Flow structure on the windward side of V-wings with separation of the turbulent boundary layer,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 68 (1989).

  16. 16.

    M. A. Zubin and N. A. Ostapenko, “Some supersonic flow regimes on the windward side of V-shaped wings,”Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2 (1992).

  17. 17.

    M. A. Zubin, V. I. Lapygin, and N. A. Ostapenko, “Theoretical and experimental investigation of the structure of supersonic flow past star-shaped bodies and their aerodynamic characteristics,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 34 (1982).

  18. 18.

    J. L. Thomas and R. U. Newsam, “Calculation of flows over the leeward surface of delta wings,”Aerokosmicheskaya Tekhnika, No. 12, 21 (1990).

  19. 19.

    G. N. Abramovich,Applied Gas Dynamics [in Russian], Nauka, Moscow (1976).

  20. 20.

    A. L. Gonor and N. A. Ostapenko, “Hypersonic flow over wings with a Mach shock wave system,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 104 (1972).

  21. 21.

    V. N. Golubkin and V. V. Negoda, “Optimization of the three-dimensional shape of low-aspect-ratio lifting bodies at hypersonic velocities,”Zh. Vychisl. Mat. Mat. Fiz.,3, 1858 (1991).

Download references

Author information

Additional information

Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 57–69, January–February, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ostapenko, N.A. Supersonic drag of three-dimensional bodies with a star-shaped cross section and its calculation. Fluid Dyn 28, 42–50 (1993). https://doi.org/10.1007/BF01055663

Download citation

Keywords

  • Viscosity
  • Experimental Data
  • Boundary Layer
  • Calculation Procedure
  • Real Property