Advertisement

Journal of Statistical Physics

, Volume 66, Issue 5–6, pp 1415–1462 | Cite as

The attractor—basin portrait of a cellular automaton

  • James E. Hanson
  • James P. Crutchfield
Articles

Abstract

Local space-time structures, such as domains and the intervening dislocations, dominate a wide class of cellular automaton (CA) behavior. For such spatially-extended dynamics regular domains, vicinities, and attractors are introduced as organizing principles to identify the discretized analogs of attractors, basins, and separatrices: structures used in classifying dissipative continuous-state dynamical systems. We describe the attractor-basin portrait of nonlinear elementary CA rule 18, whose global dynamics is largely determined by a single regular attracting domain. The latter's basin is analyzed in terms of subbasin and portal structures associated with particle annihilation. The conclusion is that the computational complexity of such CA is more apparent than real. Transducer machines are constructed that automatically identify domain and dislocation structures in space-time, count the number of dislocations in a spatial pattern, and implement an isomorphism between rule 18 and rule 90. We use a transducer to trace dislocation trajectories, and confirm that in rule 18, isolated dislocation trajectories, as well as a dislocation gas, agree extremely well with the classical model of annihilating diffusive particles. The CA efficiently transforms randomness of an initial pattern ensemble into a random walk of dislocations in space-time.

Key words

Spatially extended dynamical system cellular automata attractor basin separatrix diffusion dislocation domain invariant set finite automata transducer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wolfram,Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).Google Scholar
  2. 2.
    A. R. Smith, Simple computation-universal cellular spaces,J. ACM 18:339 (1971).Google Scholar
  3. 3.
    T. Toffoli, Cellular automata mechanics, Ph.D. thesis, University of Michigan, Michigan (1977).Google Scholar
  4. 4.
    S. Wolfram, Computation theory of cellular automata,Commun. Math. Phys. 96:15 (1984).Google Scholar
  5. 5.
    L. Hurd, Formal language characterizations of cellular automaton limit sets,Complex Systems 1:69 (1987).Google Scholar
  6. 6.
    E. R. Berlekamp, J. H. Conway, and R. K. Guy,Winning Ways for Your Mathematical Plays, Vol. 2 (Academic Press, New York, 1984).Google Scholar
  7. 7.
    T. Toffoli and N. Margolis,Cellular Automata Machines: A New Environment for Modeling (MIT Press, Cambridge, Massachusetts, 1987).Google Scholar
  8. 8.
    O. Martin, A. Odlyzko, and S. Wolfram, Algebraic properties of cellular automata,Commun. Math. Phys. 93:219 (1984).Google Scholar
  9. 9.
    K. Kaneko, Attractors, basin structures and information processing in cellular automata, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986).Google Scholar
  10. 10.
    H. Ito, Intriguing properties of global structure in some classes of finite cellular automata,Physica 31D:318 (1988).Google Scholar
  11. 11.
    E. Jen, Cylindrical cellular automata,Commun. Math. Phys. 118:569 (1990).Google Scholar
  12. 12.
    S. Wolfram, Statistical mechanics of cellular automata,Rev. Mod. Phys. 55:601 (1983).Google Scholar
  13. 13.
    H. A. Gutowitz, J. D. Victor, and B. W. Knight, Local structure theory for cellular automata,Physica 28D:18 (1987).Google Scholar
  14. 14.
    W. Li, N. H. Packard, and C. G. Langton, Transition phenomena in cellular automata rule space,Physica 45D:77 (1990).Google Scholar
  15. 15.
    N. Boccara, J. Nasser, and M. Roger, Particle-like structures and their interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules,Phys. Rev. A 44:866 (1991).Google Scholar
  16. 16.
    J. Park, K. Steiglitz, and W. Thurston, Soliton-like behavior in automata,Physica 19D:423 (1986).Google Scholar
  17. 17.
    P. Grassberger, New mechanism for deterministic diffusion,Phys. Rev. A 28:3666 (1983).Google Scholar
  18. 18.
    C. G. Langton, Computation at the edge of chaos: Phase transitions and emergent computation, inEmergent Computation, S. Forrest, ed. (North-Holland, Amsterdam, 1990), p. 12.Google Scholar
  19. 19.
    K. Lindgren, Correlations and random information in cellular automata,Complex Systems 1:529 (1987).Google Scholar
  20. 20.
    D. R. J. Chillingworth,Differential Topology with a View to Applications (Pitman, London, 1976).Google Scholar
  21. 21.
    J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).Google Scholar
  22. 22.
    J. P. Crutchfield and J. E. Hanson, Computational mechanics of cellular automata: Space and time machines, In preparation (1992).Google Scholar
  23. 23.
    P. Grassberger, Chaos and diffusion in deterministic cellular automata,Physica D 10:52 (1984).Google Scholar
  24. 24.
    D. Griffeath,Additive and Cancellative Interacting Particle Systems (Springer, Berlin, 1979).Google Scholar
  25. 25.
    J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, Reading, Massachusetts, 1979).Google Scholar
  26. 26.
    J. P. Crutchfield and K. Young, Computation at the onset of chaos, inEntropy, Complexity, and the Physics of Information, W. Zurek, ed. (Addison-Wesley, 1990), p. 223.Google Scholar
  27. 27.
    J. P. Crutchfield, Reconstructing language hierarchies, inInformation Dynamics, H. A. Atmanspracher and H. Scheingraber, eds. (Plenum New York, 1991), p. 45.Google Scholar
  28. 28.
    R. E. Blahut,Principles and Practice of Information Theory (Addison-Wesley, 1987).Google Scholar
  29. 29.
    D. A. Lind, Applications of ergodic theory and sofic systems to cellular automata,Physica 10D:36 (1984).Google Scholar
  30. 30.
    M. G. Nordahl, Formal languages and finite cellular automata,Complex Systems 3:63 (1989).Google Scholar
  31. 31.
    L. P. Hurd, Appendix. Table 10. Regular language complexities, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, Singapore, 1986).Google Scholar
  32. 32.
    N. H. Packard, Complexity in growing patterns in cellular automata, inDynamical Behavior of Automata: Theory and Applications, J. Demongeot, E. Goles, and M. Tchuente, eds. (Academic Press, 1984).Google Scholar
  33. 33.
    S. Wolfram, Universality and complexity in cellular automata,Physica 10D:1 (1984).Google Scholar
  34. 34.
    F. Harary,Graph Theory (Addison-Wesley, 1969).Google Scholar
  35. 35.
    J. P. Crutchfield and J. E. Hanson, Computational mechanics of cellular automata: Space-time machines, In Preparation (1992).Google Scholar
  36. 36.
    E. Jen, Aperiodicity in one-dimensional cellular automata,Physica 44D:121 (1990).Google Scholar
  37. 37.
    E. Jen, Exact solvability and quasiperiodicity of one-dimensional cellular automata,Non-linearity 4:251 (1990).Google Scholar
  38. 38.
    K. Eloranta and E. Nummelin, The kink of cellular automaton rule 18 performs a random walk, Technical Report A296, Helsinki University of Technology, Institute of Mathematics (1991).Google Scholar
  39. 39.
    K. Lindgren and M. G. Nordahl, Complexity measures and cellular automata,Complex Systems 2:409 (1988).Google Scholar
  40. 40.
    J. P. Crutchfield, Subbasins, portals, and mazes: Transients in high dimensions,J. Nucl. Phys. B 5A:287 (1988).Google Scholar
  41. 41.
    J. P. Crutchfield and K. Young, Inferring statistical complexity,Phys. Rev. Lett. 63:105 (1989).Google Scholar
  42. 42.
    A. G. Cairns-Smith,Genetic Takeover and the Mineral Origins of Life (Cambridge University Press, New York, 1982).Google Scholar
  43. 43.
    J. P. Crutchfield, Spatio-temporal complexity in nonlinear image processing,IEEE Trans. Circ. Syst. 37:770 (1988).Google Scholar
  44. 44.
    J. P. Crutchfield and K. Kaneko, Are attractors relevant to turbulence?,Phys. Rev. Lett. 60:2715 (1988).Google Scholar
  45. 45.
    J. P. Crutchfield and K. Kaneko, Transients in high dimensions, In preparation (1992).Google Scholar
  46. 46.
    J. P. Crutchfield and K. Kaneko, Phenomenology of spatio-temporal chaos, inDirections in Chaos, Hao Bai-lin, ed. (World Scientific, Singapore, 1987), p. 272.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • James E. Hanson
    • 1
  • James P. Crutchfield
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeley

Personalised recommendations