Advertisement

Journal of Statistical Physics

, Volume 73, Issue 3–4, pp 497–514 | Cite as

Crystalline—amorphous interface packings for disks and spheres

  • Frank H. Stillinger
  • Boris D. Lubachevsky
Articles

Abstract

We have employed a computer simulation method for uniaxial compression to create random, but spatially inhomogeneous, disk and sphere packings in contact with exposed faces of their own close-packed crystals. The disk calculations involved 7920 movable particles, while the sphere cases utilized over 4000 particles. Rates of compression to the jamming limit were varied over two orders of magnitude, and in three dimensions this produced a clear distinction between the cases of jamming against (001) and (111) faces of the sphere crystal. Specifically, epitaxial order next to the (001) face was markedly enhanced by slowing the compression; for the (111) face the epitaxial order was quite insensitive to the compression rate.

Key words

Rigid disks rigid spheres amorphous solids glasses epitaxial order crystallization interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1953), Chapters 5 and 6.Google Scholar
  2. 2.
    H. L. Frisch,Adv. Chem. Phys. 6:229 (1964).Google Scholar
  3. 3.
    K. Huang and C. N. Yang,Phys. Rev,105:767 (1957).Google Scholar
  4. 4.
    T. D. Lee, K. Huang, and C. N. Yang,Phys. Rev. 106:1135 (1957).Google Scholar
  5. 5.
    B. J. Alder and T. E. Wainwright,J. Chem. Phys. 31:459 (1959).Google Scholar
  6. 6.
    L. V. Woodcock,Ann. N.Y. Acad. Sci. 371:274 (1981).Google Scholar
  7. 7.
    B. D. Lubachevsky and F. H. Stillinger,J. Stat. Phys. 60:561 (1990).Google Scholar
  8. 8.
    B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson,J. Stat. Phys. 64:501 (1991).Google Scholar
  9. 9.
    P. H. Gaskell, inGlassy Metals, H. Beck ad H.-J. Güntherodt, eds. (Springer, Berlin, 1983), Vol. II, pp. 5–49.Google Scholar
  10. 10.
    C. H. Bennett,J. Appl. Phys. 43:2727 (1972).Google Scholar
  11. 11.
    J. L. Finney,Nature 266:309 (1977).Google Scholar
  12. 12.
    D. J. Adams and A. J. Matheson,J. Chem. Phys. 56:1989 (1972).Google Scholar
  13. 13.
    F. Delyon and Y. E. Lévy,J. Phys. A 23:4471 (1990).Google Scholar
  14. 14.
    E. L. Hinrichsen, J. Feder, and T. Jossang,Phys. Rev. A 41:4199 (1990).Google Scholar
  15. 15.
    A. Pavlovitch, R. Jullien, and P. Meakin,Physica A 176:206 (1991).Google Scholar
  16. 16.
    J. S. Rowlinson and B. Widom,Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982), p. 31.Google Scholar
  17. 17.
    W. M. Visscher and M. Bolsterli,Nature 239:504 (1972).Google Scholar
  18. 18.
    N. W. Ashcroft and N. D. Mermin,Solid State Physics (Saunders, Philadelphia, 1976).Google Scholar
  19. 19.
    J. G. Berryman,Phys. Rev. A 27:1053 (1983).Google Scholar
  20. 20.
    J. Tobochnik and P. M. Chapin,J. Chem. Phys. 88:5824 (1988).Google Scholar
  21. 21.
    J. Nezbeda and W. R. Smith,Mol. Phys. 75:789 (1992).Google Scholar
  22. 22.
    W. G. Pfann,Zone Melting (Wiley, New York, 1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Frank H. Stillinger
    • 1
  • Boris D. Lubachevsky
    • 1
  1. 1.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations