Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 1, pp 63–68 | Cite as

Nilpotent groups of finite algorithmic dimension

  • S. S. Goncharov
  • A. V. Molokov
  • N. S. Romanovskii
Article

Keywords

Nilpotent Group Algorithmic Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. S. Goncharov, “The problem of number of nonautoequivalent constructivizations,” Dokl. Akad. Nauk SSSR,251, No. 2, 271–274 (1980).Google Scholar
  2. 2.
    S. S. Goncharov, “One-valued computable numerations,” Algebra Logika,19, No. 5, 507–551 (1980).Google Scholar
  3. 3.
    S. S. Goncharov, “Groups with finitely many constructivizations,” Dokl. Akad. Nauk SSSR,256, No. 2, 269–272 (1981).Google Scholar
  4. 4.
    S. S. Goncharov, “Limit-equivalent constructivizations,” in: Mathematical Logic and Theory of Algorithms [in Russian], Vol. 2, Tr. Inst. Mat. AN SSSR, Sib. Otd. (1982).Google Scholar
  5. 5.
    A. I. Mal'tsev, “On recursive Abelian groups,” Dokl. Akad. Nauk SSSR,146, No. 5, 1009–1012 (1962).Google Scholar
  6. 6.
    C. Lin, “Recursively presented Abelian groups of effective p-group theory. I,” J. Symbolic Logic,46, No. 3, 617–624 (1981).Google Scholar
  7. 7.
    LaRoche, “Recursively presented Boolean algebras,” NAMS,24, No. 46, 552 (1978).Google Scholar
  8. 8.
    A. Manaster and J. B. Remmel, “Recursively categorical decidable dense two-dimensional partial orderings,” in: Aspects of Effective Algebra: Proc. of a Conference at Menash University, Australia, 1–4 August, 1979.Google Scholar
  9. 9.
    J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras,” J. Symbolic Logic,46, No. 3, 572–594 (1981).Google Scholar
  10. 10.
    J. B. Remmel, “Recursively categorical linear orderings,” Proc. Am. Math. Soc.,83, No. 2, 387–391 (1981).Google Scholar
  11. 11.
    R. L. Smith, “Two theorems on autostability in p-groups,” in: Lect. Notes in Math., Springer-Verlag, Vol. 859 (1981), pp. 302–311.Google Scholar
  12. 12.
    M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1977).Google Scholar
  13. 13.
    H. Neumann, Varieties of Groups [Russian translation], Mir, Moscow (1969).Google Scholar
  14. 14.
    Yu. L. Ershov, Decidability Problems and Constructive Models [in Russian], Nauka, Moscow (1980).Google Scholar
  15. 15.
    A. I. Mal'tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • S. S. Goncharov
  • A. V. Molokov
  • N. S. Romanovskii

There are no affiliations available

Personalised recommendations