Advertisement

Archives of Microbiology

, Volume 131, Issue 2, pp 129–131 | Cite as

The pathway ofD-cycloserine biosynthesis inStreptomyces garyphalus

  • Marie-Louise Svensson
  • Sten Gatenbeck
Original Papers

Abstract

Incubation experiments using washed cells and toluene treated cells ofStreptomyces garyphalus showed that O-acetyl-L-serine and hydroxyurea are intermediates in the biosynthesis ofD-cycloserine. The formation of [14C]O-ureidoserine from O-acetyl-L-serine and hydroxyurea was demonstrated by incubating an enzyme solution with14C-labelled substrates. Desalted cell-free extract catalyzed the conversion of O-ureido-D-serine toD-cycloserine in a reaction requiring ATP and Mg2+. The results suggested the following pathway forD-cycloserine biosynthesis.

Key words

D-Cycloserine O-Ureido-D-serine Biosynthesis Streptomyces garyphalus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hantzsch A, Sauer K (1898) Über Isonitramine und deren Spaltung in untersalpetrige Säure. Justus Liebigs Ann Chem 299:82–99Google Scholar
  2. Harned RL, Hidy PH, La Baw EK (1955) Cycloserine. 1. A preliminary report. Antibiot Chemother 5:204–205Google Scholar
  3. Harris DA, Ruger M, Reagan MA, Wolf FJ, Peck RL, Wallick H, Woodruff HB (1955) Discovery, development and antimicrobial properties ofD-4-amino-3-isoxazolidone (oxamycin) a new antibiotic produced byStreptomyces garyphalus n. sp. Antibiot Chemother 5:183–190Google Scholar
  4. Jones LR (1956) Colorimetric determination of cycloserine, a new antibiotic. Anal Chem 28:39–41Google Scholar
  5. Kredich NM, Tomkins GM (1966) The enzymic synthesis ofL-cysteine inEscherichia coli andSalmonella typhimurium. J Biol Chem 241:4955–4965PubMedGoogle Scholar
  6. Kurihara T, Chibe K (1956) Orientomycin, a new antibiotic. Ann Rapt Tohoku coll Pharm 3:83–86Google Scholar
  7. Murakoshi I, Ikegami F, Harada K, Haginiwa J (1978) The formation of O-ureidoserine by an enzyme in leguminous seedlings. Chem Pharm Bull 26:1942–1945Google Scholar
  8. Sheehan JC, Goodman M, Hess GP (1956) Peptide derivatives containing hydroxyamino acids. J Am Chem Soc 78:1367–1369Google Scholar
  9. Shull GM, Sardinas JL (1955) PA-94, an antibiotic identical withD-4-amino-3-isoxazolidone (cycloserine, oxamycin). Antibiot Chemother 5:398–399Google Scholar
  10. Smith IK, Thomson JF (1971) Purification and characterization ofL-serine trancacetylase and O-acetyl-L-serine sulfhydrylase from kidney bean seedlings (Phaseolus vulgaris). Biochim Biophys Acta 227:288–295PubMedGoogle Scholar
  11. Stammer CH (1962) β-Aminoxy-D-alanine. J Org Chem 27:2957–2958Google Scholar
  12. Svensson M-L, Gatenbeck S (1981) The presence of two serine racemases inStreptomyces garyphalus, aD-cycloserine producer. Arch Microbiol 129:213–215Google Scholar
  13. Svensson M-L, Valerie K, Gatenbeck S (1981) Hydroxyurea, a natural metabolite and an intermediate inD-cycloserine biosynthesis inStreptomyces garyphalus. Arch Microbiol 129:210–212Google Scholar
  14. Tanaka N, Sashikata K (1963) Biogenesis ofD-4-amino-3-isoxazolidone and O-carbamyl-D-serine. J Gen Appl Microbiol 9:409–414Google Scholar
  15. Weaver JD, Busch NF, Stammer CH (1974) Cycloserine carbamates. J Med Chem 17:1033–1035PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Marie-Louise Svensson
    • 1
  • Sten Gatenbeck
    • 1
  1. 1.Department of Biochemistry and BiotechnologyRoyal Institute of TechnologyStockholmSweden

Personalised recommendations