Advertisement

Journal of Statistical Physics

, Volume 70, Issue 1–2, pp 329–337 | Cite as

Interpretation of protein structure and dynamics from the statistics of the open and closed times measured in a single ion-channel protein

  • Larry S. Liebovitch
Articles

Abstract

Ion channels are proteins in the lipid cell membrane. They spontaneously fluctuate between conformational shapes that are open or closed to the passage of ions. The ionic currents through an individual channel can be resolved by the patch clamp technique. Thus, the time sequence of open and closed conformational states can be measured in one channel molecule. The probability density function of the dwell times in the open and closed states displays scaling functions that may arise from: (1) a large number of conformational substates having a continuous distribution of activation energy barriers, (2) time-dependent changes in the energy barriers between states, or (3) local interactions that constrain local structures which interact hierarchically to form global structure.

Key words

Ion channels proteins protein dynamics telegraph signal neural networks spin glasses stochastic resonance nonlinear dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Hille,Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1984).Google Scholar
  2. 2.
    B. Sakmann and E. Neher,Single-Channel Recording (Plenum Press, New York, 1983).Google Scholar
  3. 3.
    L. S. Liebovitch, J. Fischbarg, and J. P. Koniarek, Ion channel kinetics: A model based on fractal scaling rather than multistate Markov processes,Math. Biosci. 84:37–68 (1987).Google Scholar
  4. 4.
    L. S. Liebovitch and S. Weinbaum, A model of epithelial water transport,Biophys. J. 35:315–338 (1981).Google Scholar
  5. 5.
    L. S. Liebovitch and J. M. Sullivan, Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons,Biophys. J. 52:979–988 (1987).PubMedGoogle Scholar
  6. 6.
    L. S. Liebovitch and T. I. Toth, Fractal activity in cell membrane ion channels,Ann. N. Y. Acad. Sci. 591:375–391 (1990).Google Scholar
  7. 7.
    J. R. Alcala, E. Gratton, and F. G. Prendergast, Interpretation of fluorescent decays in proteins using continuous lifetime distributions,Biophys. J. 51:925–936 (1987).Google Scholar
  8. 8.
    R. H. Austin, K. W. Beeson, L. Eisentstein, H. Frauenfelder, and I. C. Gunsalus, Dynamics of ligand binding to myoglobin,Biochemistry 14:5355–5373 (1975).Google Scholar
  9. 9.
    T. G. Dewey and D. B. Spencer, Are protein dynamics fractal ?Comm. Mol. Cell. Biophys. 7:155–171 (1991).Google Scholar
  10. 10.
    G. M. Barrow,Physical Chemistry, 4th ed. (McGraw-Hill, New York, 1961).Google Scholar
  11. 11.
    L. S. Liebovitch and T. I. Tóth, Distributions of activation energy barriers that produce stretched exponential probability distributions for the time spent in each state of the two state reaction A⇌B,Bull. Math. Biol. 53:443–55 (1991).Google Scholar
  12. 12.
    R. McGee, Jr., M. S. P. Sansom, and P. N. R. Usherwood, Characterization of a delayed rectifier K+ channel in NG108-15 neuroblastoma × glioma cells: Gating kinetics and the effects of enrichment of membrane phospholipids with arachidonic acid,J. Membrane Biol. 102:21–34 (1988).Google Scholar
  13. 13.
    G. Careri, P. Fasella, and E. Gratton, Statistical time events in enzymes: A physical assessment,CRC Crit. Rev. Biochem. 3:141–164 (1975).Google Scholar
  14. 14.
    M. Karplus and J. A. McCammon, Dynamics of proteins: Elements and function,Annu. Rev. Biochem. 52:263–300 (1983).Google Scholar
  15. 15.
    J. A. McCammon and S. C. Harvey,Dynamics of Proteins and Nucleic Acids (Cambridge University Press, Cambridge, 1987).Google Scholar
  16. 16.
    W. D. Tian, J. T. Sage, V. Srajer, and P. M. Champion, Relaxation dynamics of myoglobin in solution,Phys. Rev. Lett. 68:408–411 (1992).Google Scholar
  17. 17.
    L. S. Liebovitch and T. I. Toth, A model of ion channel kinetics using deterministic chaotic rather than stochastic processes,J. Theor. Biol. 148:243–267 (1991).Google Scholar
  18. 18.
    L. S. Liebovitch and F. P. Czegledy, A model of ion channel kinetics based on deterministic chaotic motion in a potential with two local minima,Ann. Biomed. Eng. 20:517–531 (1992).Google Scholar
  19. 19.
    K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks,Am. J. Phys. 59:118–124 (1991).Google Scholar
  20. 20.
    H. Frauenfelder, Proteins and glasses, inStructure and Dynamics of Nucleic Acids, Proteins, and Membranes, E. Clementi and S. Chin, eds. (Plenum Press, New York, 1986), pp. 169–177.Google Scholar
  21. 21.
    D. L. Stein, Condensed matter biophysics: Structure and dynamics of large biomolecules, inStructure, Dynamics and Function of Biomolecules, A. Ehrenberg, R. Rigler, A. Graslund, and L. Nilsson, eds. (Springer-Verlag, New York, 1987), pp. 70–74.Google Scholar
  22. 22.
    P. Leopold, Mult-scale Ising model for protein denaturation,Biophys. J. 57:82a (1990).Google Scholar
  23. 23.
    M. Sasai and P. G. Wolynes, Molecular theory of associative memory Hamiltonian models of protein folding,Phys. Rev. Lett. 65:2740–2743 (1990).Google Scholar
  24. 24.
    J. L. McClelland and D. E. Rumelhart,Explorations in Parallel Distributed Processing (MIT Press, Cambridge, Massachusetts, 1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Larry S. Liebovitch
    • 1
  1. 1.Department of Ophthalmology, College of Physicians & SurgeonsColumbia UniversityNew York

Personalised recommendations